An experimental analysis and deep learning model to assess the cooling performance of green walls in humid climates

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Abdollah Baghaei Daemei, Tomasz Bradecki, Alina Pancewicz, Amirali Razzaghipour, Asma Jamali, Seyedeh Maryam Abbaszadegan, Reza Askarizad, Mostafa Kazemi, Ayyoob Sharifi
{"title":"An experimental analysis and deep learning model to assess the cooling performance of green walls in humid climates","authors":"Abdollah Baghaei Daemei, Tomasz Bradecki, Alina Pancewicz, Amirali Razzaghipour, Asma Jamali, Seyedeh Maryam Abbaszadegan, Reza Askarizad, Mostafa Kazemi, Ayyoob Sharifi","doi":"10.3389/fenrg.2024.1447655","DOIUrl":null,"url":null,"abstract":"Introduction: Amidst escalating global temperatures, increasing climate change, and rapid urbanization, addressing urban heat islands and improving outdoor thermal comfort is paramount for sustainable urban development. Green walls offer a promising strategy by effectively lowering ambient air temperatures in urban environments. While previous studies have explored their impact in various climates, their effectiveness in humid climates remains underexplored.Methods: This research investigates the cooling effect of a green wall during summer in a humid climate, employing two approaches: Field Measurement-Based Analysis (SC 1: FMA) and Deep Learning Model (SC 2: DLM). In SC 1: FMA, experiments utilized data loggers at varying distances from the green wall to capture real-time conditions. SC 2: DLM utilized a deep learning model to predict the green wall’s performance over time.Results: Results indicate a significant reduction in air temperature, with a 1.5°C (6%) decrease compared to real-time conditions. Long-term analysis identified specific distances (A, B, C, and D) contributing to temperature reductions ranging from 1.5°C to 2.5°C, highlighting optimal distances for green wall efficacy.Discussion: This study contributes novel insights by determining effective distances for green wall systems to mitigate ambient temperatures, addressing a critical gap in current literature. The integration of a deep learning model enhances analytical precision and forecasts future outcomes. Despite limitations related to a single case study and limited timeframe, this research offers practical benefits in urban heat island mitigation, enhancing outdoor comfort, and fostering sustainable and climate-resilient urban environments.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1447655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Amidst escalating global temperatures, increasing climate change, and rapid urbanization, addressing urban heat islands and improving outdoor thermal comfort is paramount for sustainable urban development. Green walls offer a promising strategy by effectively lowering ambient air temperatures in urban environments. While previous studies have explored their impact in various climates, their effectiveness in humid climates remains underexplored.Methods: This research investigates the cooling effect of a green wall during summer in a humid climate, employing two approaches: Field Measurement-Based Analysis (SC 1: FMA) and Deep Learning Model (SC 2: DLM). In SC 1: FMA, experiments utilized data loggers at varying distances from the green wall to capture real-time conditions. SC 2: DLM utilized a deep learning model to predict the green wall’s performance over time.Results: Results indicate a significant reduction in air temperature, with a 1.5°C (6%) decrease compared to real-time conditions. Long-term analysis identified specific distances (A, B, C, and D) contributing to temperature reductions ranging from 1.5°C to 2.5°C, highlighting optimal distances for green wall efficacy.Discussion: This study contributes novel insights by determining effective distances for green wall systems to mitigate ambient temperatures, addressing a critical gap in current literature. The integration of a deep learning model enhances analytical precision and forecasts future outcomes. Despite limitations related to a single case study and limited timeframe, this research offers practical benefits in urban heat island mitigation, enhancing outdoor comfort, and fostering sustainable and climate-resilient urban environments.
评估潮湿气候下绿化墙降温性能的实验分析和深度学习模型
导言:在全球气温不断攀升、气候变化日益加剧和城市化进程迅速发展的情况下,解决城市热岛问题和改善室外热舒适度对于城市的可持续发展至关重要。绿墙能有效降低城市环境中的空气温度,是一项前景广阔的战略。虽然以往的研究探讨了绿墙在不同气候条件下的影响,但对其在潮湿气候条件下的有效性仍未充分探讨:本研究采用两种方法,对夏季潮湿气候下绿墙的降温效果进行了调查:方法:本研究采用两种方法研究了绿墙在潮湿气候下的夏季降温效果:基于现场测量的分析(SC 1: FMA)和深度学习模型(SC 2: DLM)。在 SC 1:FMA 中,实验利用距离绿墙不同距离的数据记录器来捕捉实时情况。SC 2:DLM 利用深度学习模型来预测绿墙随时间变化的性能:结果表明,空气温度明显降低,与实时条件相比降低了 1.5°C (6%)。长期分析表明,特定的距离(A、B、C 和 D)有助于降低 1.5°C 至 2.5°C 的温度,突出了绿墙功效的最佳距离:本研究通过确定绿墙系统降低环境温度的有效距离,解决了当前文献中的一个关键空白,从而提出了新的见解。深度学习模型的整合提高了分析的精确性并预测了未来的结果。尽管存在单一案例研究和时间框架有限的局限性,但这项研究在缓解城市热岛、提高室外舒适度、促进可持续发展和气候适应性城市环境方面提供了切实的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信