Algorithmic Aspects of Immersibility and Embeddability

Pub Date : 2024-08-07 DOI:10.1093/imrn/rnae170
Fedor Manin, Shmuel Weinberger
{"title":"Algorithmic Aspects of Immersibility and Embeddability","authors":"Fedor Manin, Shmuel Weinberger","doi":"10.1093/imrn/rnae170","DOIUrl":null,"url":null,"abstract":"We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\\textbf{Diff}$ or $\\textbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\\mathbb{R}^{n}$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\\mathbb{R}^{n}$ is undecidable when $n-m$ is even and $11m \\geq 10n+1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\textbf{Diff}$ or $\textbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^{n}$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^{n}$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.
分享
查看原文
不可篡改性和可嵌入性的算法方面
我们分析了一个关于浸入理论的算法问题:对于$m$, $n$, $CAT=\textbf{Diff}$或$\textbf{PL}$,$m$维$CAT$-manifold在$\mathbb{R}^{n}$中是否可浸入?我们证明了除标度 2 之外的所有情况下 PL 可沉浸性都是可决的,而光滑可沉浸性在所有奇数标度上都是可决的,在许多偶数标度上则是不可决的。作为推论,我们证明了当 $n-m$ 是偶数且 $11m \geq 10n+1$ 时,$m$-manifold 的平滑可嵌入性是不可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信