On the Complexity of the Conditional Independence Implication Problem With Bounded Cardinalities

Michał Makowski
{"title":"On the Complexity of the Conditional Independence Implication Problem With Bounded Cardinalities","authors":"Michał Makowski","doi":"arxiv-2408.02550","DOIUrl":null,"url":null,"abstract":"We show that the conditional independence (CI) implication problem with\nbounded cardinalities, which asks whether a given CI implication holds for all\ndiscrete random variables with given cardinalities, is co-NEXPTIME-hard. The\nproblem remains co-NEXPTIME-hard if all variables are binary. The reduction\ngoes from a variant of the tiling problem and is based on a prior construction\nused by Cheuk Ting Li to show the undecidability of a related problem where the\ncardinality of some variables remains unbounded. The CI implication problem\nwith bounded cardinalities is known to be in EXPSPACE, as its negation can be\nstated as an existential first-order logic formula over the reals of size\nexponential with regard to the size of the input.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the conditional independence (CI) implication problem with bounded cardinalities, which asks whether a given CI implication holds for all discrete random variables with given cardinalities, is co-NEXPTIME-hard. The problem remains co-NEXPTIME-hard if all variables are binary. The reduction goes from a variant of the tiling problem and is based on a prior construction used by Cheuk Ting Li to show the undecidability of a related problem where the cardinality of some variables remains unbounded. The CI implication problem with bounded cardinalities is known to be in EXPSPACE, as its negation can be stated as an existential first-order logic formula over the reals of size exponential with regard to the size of the input.
论有界标的条件独立隐含问题的复杂性
我们证明,有界万有引力的条件独立性(CI)蕴涵问题(该问题询问给定的 CI 蕴涵对于给定万有引力的所有离散随机变量是否成立)是共 NEXPTIME 难问题。如果所有变量都是二进制变量,这个问题仍然是共 NEXPTIME-hard。这一还原源于平铺问题的一个变体,并基于李卓廷用来证明某些变量的卡方根性仍然无界的相关问题的不可判定性的先验构造。众所周知,有界心数的 CI 含义问题在 EXPSPACE 中,因为它的否定可以最好地表示为一个存在的一阶逻辑公式,这个公式在有界心数的实数上,其大小与输入的大小成指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信