pyBregMan: A Python library for Bregman Manifolds

Frank Nielsen, Alexander Soen
{"title":"pyBregMan: A Python library for Bregman Manifolds","authors":"Frank Nielsen, Alexander Soen","doi":"arxiv-2408.04175","DOIUrl":null,"url":null,"abstract":"A Bregman manifold is a synonym for a dually flat space in information\ngeometry which admits as a canonical divergence a Bregman divergence. Bregman\nmanifolds are induced by smooth strictly convex functions like the cumulant or\npartition functions of regular exponential families, the negative entropy of\nmixture families, or the characteristic functions of regular cones just to list\na few such convex Bregman generators. We describe the design of pyBregMan, a\nlibrary which implements generic operations on Bregman manifolds and\ninstantiate several common Bregman manifolds used in information sciences. At\nthe core of the library is the notion of Legendre-Fenchel duality inducing a\ncanonical pair of dual potential functions and dual Bregman divergences. The\nlibrary also implements the Fisher-Rao manifolds of categorical/multinomial\ndistributions and multivariate normal distributions. To demonstrate the use of\nthe pyBregMan kernel manipulating those Bregman and Fisher-Rao manifolds, the\nlibrary also provides several core algorithms for various applications in\nstatistics, machine learning, information fusion, and so on.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Bregman manifold is a synonym for a dually flat space in information geometry which admits as a canonical divergence a Bregman divergence. Bregman manifolds are induced by smooth strictly convex functions like the cumulant or partition functions of regular exponential families, the negative entropy of mixture families, or the characteristic functions of regular cones just to list a few such convex Bregman generators. We describe the design of pyBregMan, a library which implements generic operations on Bregman manifolds and instantiate several common Bregman manifolds used in information sciences. At the core of the library is the notion of Legendre-Fenchel duality inducing a canonical pair of dual potential functions and dual Bregman divergences. The library also implements the Fisher-Rao manifolds of categorical/multinomial distributions and multivariate normal distributions. To demonstrate the use of the pyBregMan kernel manipulating those Bregman and Fisher-Rao manifolds, the library also provides several core algorithms for various applications in statistics, machine learning, information fusion, and so on.
pyBregMan: 用于布雷格曼曼形图的 Python 库
布雷格曼流形是信息几何中二元平坦空间的同义词,它的典型发散是布雷格曼发散。Bregmanmanifold 由光滑的严格凸函数诱导而成,例如正则指数族的累积函数或分部函数、混合物族的负熵或正则圆锥的特征函数,这里仅列举了几个这样的凸 Bregman 生成器。我们介绍了 pyBregMan 的设计,该库实现了对 Bregman 流形的通用操作,并建立了信息科学中常用的几种 Bregman 流形。该库的核心是 Legendre-Fenchel 对偶概念,它诱发了一对对偶势函数和对偶 Bregman 分歧。该库还实现了分类/多叉分布和多元正态分布的 Fisher-Rao 流形。为了演示如何使用 pyBregMan 内核处理这些 Bregman 和 Fisher-Rao 流形,该库还为统计、机器学习、信息融合等各种应用提供了几种核心算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信