Decoding Quantum LDPC Codes Using Graph Neural Networks

Vukan Ninkovic, Ognjen Kundacina, Dejan Vukobratovic, Christian Häger, Alexandre Graell i Amat
{"title":"Decoding Quantum LDPC Codes Using Graph Neural Networks","authors":"Vukan Ninkovic, Ognjen Kundacina, Dejan Vukobratovic, Christian Häger, Alexandre Graell i Amat","doi":"arxiv-2408.05170","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel decoding method for Quantum Low-Density\nParity-Check (QLDPC) codes based on Graph Neural Networks (GNNs). Similar to\nthe Belief Propagation (BP)-based QLDPC decoders, the proposed GNN-based QLDPC\ndecoder exploits the sparse graph structure of QLDPC codes and can be\nimplemented as a message-passing decoding algorithm. We compare the proposed\nGNN-based decoding algorithm against selected classes of both conventional and\nneural-enhanced QLDPC decoding algorithms across several QLDPC code designs.\nThe simulation results demonstrate excellent performance of GNN-based decoders\nalong with their low complexity compared to competing methods.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs). Similar to the Belief Propagation (BP)-based QLDPC decoders, the proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm. We compare the proposed GNN-based decoding algorithm against selected classes of both conventional and neural-enhanced QLDPC decoding algorithms across several QLDPC code designs. The simulation results demonstrate excellent performance of GNN-based decoders along with their low complexity compared to competing methods.
利用图神经网络解码量子 LDPC 代码
本文提出了一种基于图神经网络(GNN)的量子低密度奇偶校验(QLDPC)码新型解码方法。与基于信念传播(BP)的 QLDPC 解码器类似,本文提出的基于 GNN 的 QLDPC 解码器利用了 QLDPC 码的稀疏图结构,可以作为消息传递解码算法来实现。我们将所提出的基于 GNN 的解码算法与几种 QLDPC 代码设计中选定类别的传统 QLDPC 解码算法和神经增强 QLDPC 解码算法进行了比较,仿真结果表明,与其他竞争方法相比,基于 GNN 的解码器性能卓越、复杂度低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信