Hybrid Quantum-Classical Neural Networks for Downlink Beamforming Optimization

Juping Zhang, Gan Zheng, Toshiaki Koike-Akino, Kai-Kit Wong, Fraser Burton
{"title":"Hybrid Quantum-Classical Neural Networks for Downlink Beamforming Optimization","authors":"Juping Zhang, Gan Zheng, Toshiaki Koike-Akino, Kai-Kit Wong, Fraser Burton","doi":"arxiv-2408.04747","DOIUrl":null,"url":null,"abstract":"This paper investigates quantum machine learning to optimize the beamforming\nin a multiuser multiple-input single-output downlink system. We aim to combine\nthe power of quantum neural networks and the success of classical deep neural\nnetworks to enhance the learning performance. Specifically, we propose two\nhybrid quantum-classical neural networks to maximize the sum rate of a downlink\nsystem. The first one proposes a quantum neural network employing parameterized\nquantum circuits that follows a classical convolutional neural network. The\nclassical neural network can be jointly trained with the quantum neural network\nor pre-trained leading to a fine-tuning transfer learning method. The second\none designs a quantum convolutional neural network to better extract features\nfollowed by a classical deep neural network. Our results demonstrate the\nfeasibility of the proposed hybrid neural networks, and reveal that the first\nmethod can achieve similar sum rate performance compared to a benchmark\nclassical neural network with significantly less training parameters; while the\nsecond method can achieve higher sum rate especially in presence of many users\nstill with less training parameters. The robustness of the proposed methods is\nverified using both software simulators and hardware emulators considering\nnoisy intermediate-scale quantum devices.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates quantum machine learning to optimize the beamforming in a multiuser multiple-input single-output downlink system. We aim to combine the power of quantum neural networks and the success of classical deep neural networks to enhance the learning performance. Specifically, we propose two hybrid quantum-classical neural networks to maximize the sum rate of a downlink system. The first one proposes a quantum neural network employing parameterized quantum circuits that follows a classical convolutional neural network. The classical neural network can be jointly trained with the quantum neural network or pre-trained leading to a fine-tuning transfer learning method. The second one designs a quantum convolutional neural network to better extract features followed by a classical deep neural network. Our results demonstrate the feasibility of the proposed hybrid neural networks, and reveal that the first method can achieve similar sum rate performance compared to a benchmark classical neural network with significantly less training parameters; while the second method can achieve higher sum rate especially in presence of many users still with less training parameters. The robustness of the proposed methods is verified using both software simulators and hardware emulators considering noisy intermediate-scale quantum devices.
用于下行波束成形优化的混合量子-经典神经网络
本文研究了量子机器学习如何优化多用户多输入单输出下行链路系统中的波束成形。我们旨在结合量子神经网络的强大功能和经典深度神经网络的成功经验来提高学习性能。具体来说,我们提出了两种混合量子-经典神经网络,以最大限度地提高下行链路系统的总和速率。第一种提出了一种量子神经网络,它采用参数化量子电路,沿用经典卷积神经网络。经典神经网络可以与量子神经网络联合训练,也可以预先训练,从而形成一种微调转移学习方法。第二种方法是设计一个量子卷积神经网络,以更好地提取经典深度神经网络的特征。我们的研究结果证明了所提出的混合神经网络的可行性,并揭示出第一种方法与基准的经典神经网络相比,可以获得相似的总和率性能,但训练参数明显较少;而第二种方法可以获得更高的总和率,尤其是在有许多用户的情况下,但训练参数仍然较少。使用软件模拟器和硬件仿真器验证了所提方法的鲁棒性,并考虑了中间规模量子设备的噪声问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信