Heat production in a stochastic system with nonlinear time-delayed feedback

Robin A. Kopp, Sabine H. L. Klapp
{"title":"Heat production in a stochastic system with nonlinear time-delayed feedback","authors":"Robin A. Kopp, Sabine H. L. Klapp","doi":"arxiv-2408.03316","DOIUrl":null,"url":null,"abstract":"Using the framework of stochastic thermodynamics we study heat production\nrelated to the stochastic motion of a particle driven by repulsive, nonlinear,\ntime-delayed feedback. Recently it has been shown that this type of feedback\ncan lead to persistent motion above a threshold in parameter space [Physical\nReview E 107, 024611 (2023)]. Here we investigate, numerically and by\nanalytical methods, the rate of heat production in the different regimes around\nthe threshold to persistent motion. We find a nonzero average heat production\nrate, $\\langle \\dot{q}\\rangle$, already below the threshold, indicating the\nnonequilibrium character of the system even at small feedback. In this regime,\nwe compare to analytical results for a corresponding linearized delayed system\nand a small-delay approximation which provides a reasonable description of\n$\\langle \\dot{q}\\rangle$ at small repulsion (or delay time). Beyond the\nthreshold, the rate of heat production is much larger and shows a maximum as\nfunction of the delay time. In this regime, $\\langle \\dot{q}\\rangle$ can be\napproximated by that of a system subject to a constant force stemming from the\nlong-time velocity in the deterministic limit. The distribution of dissipated\nheat, however, is non-Gaussian, contrary to the constant-force case.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the framework of stochastic thermodynamics we study heat production related to the stochastic motion of a particle driven by repulsive, nonlinear, time-delayed feedback. Recently it has been shown that this type of feedback can lead to persistent motion above a threshold in parameter space [Physical Review E 107, 024611 (2023)]. Here we investigate, numerically and by analytical methods, the rate of heat production in the different regimes around the threshold to persistent motion. We find a nonzero average heat production rate, $\langle \dot{q}\rangle$, already below the threshold, indicating the nonequilibrium character of the system even at small feedback. In this regime, we compare to analytical results for a corresponding linearized delayed system and a small-delay approximation which provides a reasonable description of $\langle \dot{q}\rangle$ at small repulsion (or delay time). Beyond the threshold, the rate of heat production is much larger and shows a maximum as function of the delay time. In this regime, $\langle \dot{q}\rangle$ can be approximated by that of a system subject to a constant force stemming from the long-time velocity in the deterministic limit. The distribution of dissipated heat, however, is non-Gaussian, contrary to the constant-force case.
具有非线性延时反馈的随机系统中的热量产生
利用随机热力学框架,我们研究了与粒子在排斥性、非线性、延时反馈驱动下的随机运动有关的热量产生。最近的研究表明,这种类型的反馈会导致超过参数空间阈值的持续运动[PhysicalReview E 107, 024611 (2023)]。在此,我们通过数值和分析方法研究了持续运动阈值附近不同状态下的产热速率。我们发现在阈值以下就有一个非零的平均产热率($\langle \dot{q}\rangle$),这表明即使在小反馈时系统也是平衡的。在这种情况下,我们比较了相应线性化延迟系统的分析结果和小延迟近似值,后者对小排斥力(或延迟时间)下的$langle \dot{q}\rangle$ 提供了合理的描述。超过阈值后,产热速率会更大,并显示出与延迟时间函数相关的最大值。在这种情况下,$\langle \dot{q}\rangle$可以近似于一个系统在确定性极限下受到的源于长时速度的恒定力。然而,耗散热的分布是非高斯分布,这与恒力情况相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信