Classification and Double Commutant Property for Dual Pairs in an Orthosymplectic Lie Supergroup

IF 0.4 3区 数学 Q4 MATHEMATICS
Allan Merino, Hadi Salmasian
{"title":"Classification and Double Commutant Property for Dual Pairs in an Orthosymplectic Lie Supergroup","authors":"Allan Merino, Hadi Salmasian","doi":"10.1007/s00031-024-09868-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\textrm{E}=\\textrm{E}_{\\bar{0}}\\oplus \\textrm{E}_{\\bar{1}}\\)</span> be a real or complex <span>\\(\\mathbb {Z}_2\\)</span>-graded vector space equipped with an even supersymmetric bilinear form that restricts to a symplectic form on <span>\\(\\textrm{E}_{\\bar{0}}\\)</span> and an orthogonal form on <span>\\(\\textrm{E}_{\\bar{1}}\\)</span>. We obtain a full classification of reductive dual pairs in the (real or complex) orthosymplectic Lie superalgebra <span>\\(\\mathfrak {spo}\\)</span>(E) and its associated Lie supergroup <span>\\({\\textbf {SpO}}(\\textrm{E})\\)</span>. Similar to the purely even case, dual pairs are divided into two subclasses: Type I and Type II. The main difference with the purely even case occurs in the characterization of (super)hermitian forms on modules over division superalgebras. We then use this classification to prove that for a reductive dual pair <span>\\((\\mathscr {G}\\,, \\mathscr {G}') = ((\\textrm{G}\\,, \\mathfrak {g})\\,, (\\textrm{G}'\\,, \\mathfrak {g}'))\\)</span> in <span>\\({\\textbf {SpO}}(\\textrm{E})\\)</span>, the superalgebra <span>\\({\\textbf {WC}}(\\textrm{E})^{\\mathscr {G}}\\)</span> that consists of <span>\\(\\mathscr {G}\\)</span>-invariant elements in the Weyl-Clifford algebra <span>\\({\\textbf {WC}}(\\textrm{E})\\)</span>, when it is equipped with the natural action of the orthosymplectic Lie supergroup <span>\\({\\textbf {SpO}}(\\textrm{E})\\)</span>, is generated by the Lie superalgebra <span>\\(\\mathfrak {g}'\\)</span>. As an application of the latter double commutant property, we prove that Howe duality holds for the dual pairs <span>\\(( {{\\textbf {SpO}}}(2n|1)\\,, {{\\textbf {OSp}}}(2k|2l)) \\subseteq {{\\textbf {SpO}}}(\\mathbb {C}^{2k|2l} \\otimes \\mathbb {C}^{2n|1})\\)</span>.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09868-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\textrm{E}=\textrm{E}_{\bar{0}}\oplus \textrm{E}_{\bar{1}}\) be a real or complex \(\mathbb {Z}_2\)-graded vector space equipped with an even supersymmetric bilinear form that restricts to a symplectic form on \(\textrm{E}_{\bar{0}}\) and an orthogonal form on \(\textrm{E}_{\bar{1}}\). We obtain a full classification of reductive dual pairs in the (real or complex) orthosymplectic Lie superalgebra \(\mathfrak {spo}\)(E) and its associated Lie supergroup \({\textbf {SpO}}(\textrm{E})\). Similar to the purely even case, dual pairs are divided into two subclasses: Type I and Type II. The main difference with the purely even case occurs in the characterization of (super)hermitian forms on modules over division superalgebras. We then use this classification to prove that for a reductive dual pair \((\mathscr {G}\,, \mathscr {G}') = ((\textrm{G}\,, \mathfrak {g})\,, (\textrm{G}'\,, \mathfrak {g}'))\) in \({\textbf {SpO}}(\textrm{E})\), the superalgebra \({\textbf {WC}}(\textrm{E})^{\mathscr {G}}\) that consists of \(\mathscr {G}\)-invariant elements in the Weyl-Clifford algebra \({\textbf {WC}}(\textrm{E})\), when it is equipped with the natural action of the orthosymplectic Lie supergroup \({\textbf {SpO}}(\textrm{E})\), is generated by the Lie superalgebra \(\mathfrak {g}'\). As an application of the latter double commutant property, we prove that Howe duality holds for the dual pairs \(( {{\textbf {SpO}}}(2n|1)\,, {{\textbf {OSp}}}(2k|2l)) \subseteq {{\textbf {SpO}}}(\mathbb {C}^{2k|2l} \otimes \mathbb {C}^{2n|1})\).

正交李超群中双对的分类和双换向性质
让(\textrm{E}=\textrm{E}_{/bar{0}}\textrm{E}_{/bar{1}})是一个实或复\(\mathbb {Z}_2\)- 梯度向量空间。分级向量空间,它配备了一个偶数超对称双线性形式,这个双线性形式限制为 \(\textrm{E}_{\bar{0}}\) 上的交点形式和 \(\textrm{E}_{\bar{1}}\) 上的正交形式。我们得到了(实或复)正交李超代数 \(\mathfrak {spo}\)(E) 及其相关李超群 \({\textbf {SpO}}(\textrm{E})\) 中还原对偶的完整分类。与纯偶数情况类似,对偶对分为两个子类:第一类和第二类。与纯偶数情况的主要区别在于对划分上代数模块上的(超)全态形式的描述。然后,我们利用这一分类来证明,对于 \({\textbf {SpO}}(\textrm{E})\) 中的还原对偶((\mathscr {G}\,, \mathscr {G}') = ((\textrm{G}\,, \mathfrak {g})\, (\textrm{G}'\,, \mathfrak {g}'))\)、上代数 \({\textbf {WC}}(\textrm{E})^{mathscr {G}}\),由韦尔-克利福德代数 \({\textbf {WC}}(\textrm{E})\) 中的\(\mathscr {G}}\)-不变元素组成、当它具有正交李超群 \({\textbf {SpO}}(\textrm{E})\) 的自然作用时,由李超代数 \(\mathfrak {g}'\) 生成。作为后一个双换元性质的应用,我们证明 Howe 对偶性对 \(( {{textbf {SpO}}(2n|1)\,, {{textbf {OSp}}(2k|2l)))\subseteq {{textbf {SpO}}(\mathbb {C}^{2k|2l} \otimes \mathbb {C}^{2n|1})\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信