A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity

Catherine Drysdale, Matthew J. Colbrook
{"title":"A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity","authors":"Catherine Drysdale, Matthew J. Colbrook","doi":"arxiv-2408.00845","DOIUrl":null,"url":null,"abstract":"The Hypothalamic-Pituitary-Adrenal (HPA) axis is a major neuroendocrine\nsystem, and its dysregulation is implicated in various diseases. This system\nalso presents interesting mathematical challenges for modeling. We consider a\nnonlinear delay differential equation model and calculate pseudospectra of\nthree different linearizations: a time-dependent Jacobian, linearization around\nthe limit cycle, and dynamic mode decomposition (DMD) analysis of Koopman\noperators (global linearization). The time-dependent Jacobian provided insight\ninto experimental phenomena, explaining why rats respond differently to\nperturbations during corticosterone secretion's upward versus downward slopes.\nWe developed new mathematical techniques for the other two linearizations to\ncalculate pseudospectra on Banach spaces and apply DMD to delay differential\nequations, respectively. These methods helped establish local and global limit\ncycle stability and study transients. Additionally, we discuss using\npseudospectra to substantiate the model in experimental contexts and establish\nbio-variability via data-driven methods. This work is the first to utilize\npseudospectra to explore the HPA axis.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hypothalamic-Pituitary-Adrenal (HPA) axis is a major neuroendocrine system, and its dysregulation is implicated in various diseases. This system also presents interesting mathematical challenges for modeling. We consider a nonlinear delay differential equation model and calculate pseudospectra of three different linearizations: a time-dependent Jacobian, linearization around the limit cycle, and dynamic mode decomposition (DMD) analysis of Koopman operators (global linearization). The time-dependent Jacobian provided insight into experimental phenomena, explaining why rats respond differently to perturbations during corticosterone secretion's upward versus downward slopes. We developed new mathematical techniques for the other two linearizations to calculate pseudospectra on Banach spaces and apply DMD to delay differential equations, respectively. These methods helped establish local and global limit cycle stability and study transients. Additionally, we discuss using pseudospectra to substantiate the model in experimental contexts and establish bio-variability via data-driven methods. This work is the first to utilize pseudospectra to explore the HPA axis.
伪谱在数学生物学中的新用途:了解 HPA 轴的敏感性
下丘脑-垂体-肾上腺(HPA)轴是一个重要的神经内分泌系统,其失调与多种疾病有关。该系统的建模也面临着有趣的数学挑战。我们考虑了一个非线性延迟微分方程模型,并计算了三种不同线性化的伪谱:随时间变化的雅各比、围绕极限周期的线性化以及库普曼操作器的动态模态分解(DMD)分析(全局线性化)。与时间相关的雅各布线性化深入揭示了实验现象,解释了为什么大鼠对皮质酮分泌上升斜率和下降斜率过程中的扰动反应不同。这些方法有助于建立局部和全局极限周期稳定性并研究瞬态。此外,我们还讨论了利用伪谱在实验环境中证实模型,并通过数据驱动方法建立生物可变性。这项工作是首次利用伪光谱来探索 HPA 轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信