Integrated normal discriminant analysis in mapreduce for diabetic chronic disease prediction using bivariant deep neural networks

R. Ramani, D. Dhinakaran, S. Edwin Raja, M. Thiyagarajan, D. Selvaraj
{"title":"Integrated normal discriminant analysis in mapreduce for diabetic chronic disease prediction using bivariant deep neural networks","authors":"R. Ramani, D. Dhinakaran, S. Edwin Raja, M. Thiyagarajan, D. Selvaraj","doi":"10.1007/s41870-024-02139-8","DOIUrl":null,"url":null,"abstract":"<p>This study presents the Normal Discriminant Feature Selection based Regressive Deep Neural MapReduce (NDFS-RDNMR) framework designed for efficient prediction of diabetic chronic diseases using input datasets. The primary aim of NDFS-RDNMR is to enhance accuracy and recall in handling large datasets for chronic disease prediction. The framework integrates the Normal Discriminative Preprocessing Model (NDPM) and bivariant regressive deep artificial neural network with MapReduce (BRDANNMR) classifier. Utilizing the Pima Indian diabetic dataset as input, NDFS-RDNMR conducts feature preprocessing through NDPM to extract relevant features for disease prediction. Non-traditional datasets are transformed into traditional formats via parameter rescaling to fit within predefined value ranges. Min–max normalization is applied to improve system accuracy while preserving data relationships. The BRDANNMR classifier utilizes bivariant regression analysis in the mapping phase to generate intermediary outcomes, which are then classified using a bipolar activation function in the reducer process. The framework achieves high accuracy and recall in early diabetes disease prediction, offering valuable insights for medical practitioners and researchers.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02139-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the Normal Discriminant Feature Selection based Regressive Deep Neural MapReduce (NDFS-RDNMR) framework designed for efficient prediction of diabetic chronic diseases using input datasets. The primary aim of NDFS-RDNMR is to enhance accuracy and recall in handling large datasets for chronic disease prediction. The framework integrates the Normal Discriminative Preprocessing Model (NDPM) and bivariant regressive deep artificial neural network with MapReduce (BRDANNMR) classifier. Utilizing the Pima Indian diabetic dataset as input, NDFS-RDNMR conducts feature preprocessing through NDPM to extract relevant features for disease prediction. Non-traditional datasets are transformed into traditional formats via parameter rescaling to fit within predefined value ranges. Min–max normalization is applied to improve system accuracy while preserving data relationships. The BRDANNMR classifier utilizes bivariant regression analysis in the mapping phase to generate intermediary outcomes, which are then classified using a bipolar activation function in the reducer process. The framework achieves high accuracy and recall in early diabetes disease prediction, offering valuable insights for medical practitioners and researchers.

Abstract Image

使用双变量深度神经网络在 mapreduce 中进行糖尿病慢性病预测的综合正常判别分析
本研究介绍了基于正常判别特征选择的递归深度神经 MapReduce(NDFS-RDNMR)框架,该框架旨在利用输入数据集高效预测糖尿病慢性疾病。NDFS-RDNMR 的主要目的是在处理慢性病预测的大型数据集时提高准确率和召回率。该框架集成了正常判别预处理模型(NDPM)和带有 MapReduce(BRDANNMR)分类器的双变量回归深度人工神经网络。NDFS-RDNMR 利用皮马印度糖尿病数据集作为输入,通过 NDPM 进行特征预处理,以提取疾病预测的相关特征。通过参数重新缩放将非传统数据集转换为传统格式,以符合预定义的值范围。采用最小-最大归一化,以提高系统准确性,同时保留数据关系。BRDANNMR 分类器在映射阶段利用双变量回归分析生成中间结果,然后在还原过程中使用双极激活函数对中间结果进行分类。该框架在早期糖尿病疾病预测方面实现了较高的准确率和召回率,为医疗从业人员和研究人员提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信