Opposition-based optimized max pooled 3D convolutional features for action video retrieval

Alina Banerjee, Ravinder Megavath, Ela Kumar
{"title":"Opposition-based optimized max pooled 3D convolutional features for action video retrieval","authors":"Alina Banerjee, Ravinder Megavath, Ela Kumar","doi":"10.1007/s41870-024-02102-7","DOIUrl":null,"url":null,"abstract":"<p>Key frame selection serves as a c bridge between raw video data and meaningful retrieval results. Effective key frame selection enhances the performance of content-based video retrieval systems by reducing computational complexity, improving search accuracy, and enabling faster browsing through large video databases. Additionally, fixed keyframe sampling techniques do not address information optimization, which might lead to information redundancy or loss. For effective video retrieval, a keyframe selection method based on opposition-based learning has been developed. The outcomes show that the method performs better than numerous benchmark sampling strategies.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02102-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Key frame selection serves as a c bridge between raw video data and meaningful retrieval results. Effective key frame selection enhances the performance of content-based video retrieval systems by reducing computational complexity, improving search accuracy, and enabling faster browsing through large video databases. Additionally, fixed keyframe sampling techniques do not address information optimization, which might lead to information redundancy or loss. For effective video retrieval, a keyframe selection method based on opposition-based learning has been developed. The outcomes show that the method performs better than numerous benchmark sampling strategies.

Abstract Image

基于对立面的优化最大池化三维卷积特征用于动作视频检索
关键帧选择是原始视频数据与有意义的检索结果之间的桥梁。有效的关键帧选择可以降低计算复杂度、提高搜索准确性并加快大型视频数据库的浏览速度,从而提高基于内容的视频检索系统的性能。此外,固定关键帧采样技术不涉及信息优化,可能会导致信息冗余或丢失。为了实现有效的视频检索,我们开发了一种基于对立学习的关键帧选择方法。研究结果表明,该方法的性能优于众多基准采样策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信