SAFARM: simulated annealing based framework for association rule mining

Preeti Kaur, Sujal Goel, Aryan Tyagi, Sharil Malik, Utkarsh Shrivastava
{"title":"SAFARM: simulated annealing based framework for association rule mining","authors":"Preeti Kaur, Sujal Goel, Aryan Tyagi, Sharil Malik, Utkarsh Shrivastava","doi":"10.1007/s41870-024-02079-3","DOIUrl":null,"url":null,"abstract":"<p>The research paper introduces an algorithm called SAFARM which performs association rule mining with the help of simulated annealing. It’s a multi-objective problem with vast search space. The suggested approach is independent of the database as it does not require minimum support or minimum confidence specification. In the algorithm, a fitness function is designed to fulfill the required objective and the presentation of rules is proposed with a compact structure. The correctness and efficiency of the algorithm is verified by testing it on synthetic and real databases.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02079-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research paper introduces an algorithm called SAFARM which performs association rule mining with the help of simulated annealing. It’s a multi-objective problem with vast search space. The suggested approach is independent of the database as it does not require minimum support or minimum confidence specification. In the algorithm, a fitness function is designed to fulfill the required objective and the presentation of rules is proposed with a compact structure. The correctness and efficiency of the algorithm is verified by testing it on synthetic and real databases.

Abstract Image

SAFARM:基于模拟退火的关联规则挖掘框架
研究论文介绍了一种名为 SAFARM 的算法,该算法借助模拟退火技术进行关联规则挖掘。这是一个具有广阔搜索空间的多目标问题。所建议的方法与数据库无关,因为它不需要最小支持度或最小置信度规范。在该算法中,设计了一个拟合函数来实现所需的目标,并提出了结构紧凑的规则表述方式。通过在合成数据库和真实数据库上进行测试,验证了算法的正确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信