Data augmentation and generative machine learning on the cloud platform

Piyush Vyas, Kaushik Muthusamy Ragothaman, Akhilesh Chauhan, Bhaskar Rimal
{"title":"Data augmentation and generative machine learning on the cloud platform","authors":"Piyush Vyas, Kaushik Muthusamy Ragothaman, Akhilesh Chauhan, Bhaskar Rimal","doi":"10.1007/s41870-024-02104-5","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to explore the image data augmentation application on the cloud platform utilizing state-of-the-art generative machine learning techniques. This paper further highlights these techniques’ significance in addressing the challenge of data generation and emphasizes the need for further research in this area. This research adopts an in-depth exploration approach to examine the burgeoning domain of generative machine learning techniques. It discusses the evolution of these techniques and their integration with cloud services powered by Graphical Processing Unit (GPU)-enabled computational engines. Practical experimentation involving Modified National Institute of Standards and Technology (MNIST) data is conducted to showcase the capabilities of generative models, with a focus on the core Generative Adversarial Network (GAN). The findings reveal the potential of generative machine learning techniques in generating new data images, as demonstrated through practical experimentation with MNIST data. It also highlights the ongoing evolution of these techniques and their challenges, particularly in terms of computational requirements and integration with cloud computing services. This research originally contributes to the existing literature by providing insights into recent advancements and challenges in GANs and their synergies with cloud computing. It presents results from experimentation and emphasizes the importance of cost-effective development environments for implementing generative machine learning techniques.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02104-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to explore the image data augmentation application on the cloud platform utilizing state-of-the-art generative machine learning techniques. This paper further highlights these techniques’ significance in addressing the challenge of data generation and emphasizes the need for further research in this area. This research adopts an in-depth exploration approach to examine the burgeoning domain of generative machine learning techniques. It discusses the evolution of these techniques and their integration with cloud services powered by Graphical Processing Unit (GPU)-enabled computational engines. Practical experimentation involving Modified National Institute of Standards and Technology (MNIST) data is conducted to showcase the capabilities of generative models, with a focus on the core Generative Adversarial Network (GAN). The findings reveal the potential of generative machine learning techniques in generating new data images, as demonstrated through practical experimentation with MNIST data. It also highlights the ongoing evolution of these techniques and their challenges, particularly in terms of computational requirements and integration with cloud computing services. This research originally contributes to the existing literature by providing insights into recent advancements and challenges in GANs and their synergies with cloud computing. It presents results from experimentation and emphasizes the importance of cost-effective development environments for implementing generative machine learning techniques.

Abstract Image

云平台上的数据增强和生成式机器学习
本文旨在利用最先进的生成式机器学习技术,探索云平台上的图像数据增强应用。本文进一步强调了这些技术在应对数据生成挑战方面的重要意义,并强调了在这一领域开展进一步研究的必要性。本研究采用了一种深入探索的方法来研究新兴的生成式机器学习技术领域。它讨论了这些技术的演变及其与由图形处理器(GPU)驱动的计算引擎提供的云服务的整合。通过对修改后的美国国家标准与技术研究院(MNIST)数据进行实际实验,展示了生成模型的能力,重点是核心生成对抗网络(GAN)。通过对 MNIST 数据的实际实验,研究结果揭示了生成式机器学习技术在生成新数据图像方面的潜力。研究还强调了这些技术的不断发展及其面临的挑战,特别是在计算要求和与云计算服务的集成方面。本研究对 GANs 的最新进展和挑战及其与云计算的协同作用进行了深入探讨,为现有文献做出了贡献。它介绍了实验结果,并强调了具有成本效益的开发环境对于实施生成式机器学习技术的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信