Enhancing sarcasm detection through grasshopper optimization with deep learning based sentiment analysis on social media

Nidamanuri Srinu, K. Sivaraman, M. Sriram
{"title":"Enhancing sarcasm detection through grasshopper optimization with deep learning based sentiment analysis on social media","authors":"Nidamanuri Srinu, K. Sivaraman, M. Sriram","doi":"10.1007/s41870-024-02057-9","DOIUrl":null,"url":null,"abstract":"<p>Detecting sarcasm in social media presents challenges in natural language processing (NLP) due to the informal language, contextual complexities, and nuanced expression of sentiment. Integrating sentiment analysis (SA) with sarcasm detection enhances the understanding of text meaning. Deep learning (DL), utilizing neural networks to grasp lexical and contextual features, offers a method for sarcasm detection. However, current DL-based sarcasm detection methods often overlook sentiment semantics, a crucial aspect for improving detection outcomes. Therefore, this study develops a new sarcasm detection using grasshopper optimization algorithm with DL (SD-GOADL) technique. The SD-GOADL technique aims to explore the patterns that exist in social media data and detect sarcasm. To obtain this, the SD-GOADL technique undergoes data pre-processing and Glove based word embedding technique. Next, the classification of sarcasm takes place using deep belief network (DBN) system. For enhancing the detection results of the DBN approach, the SD-GOADL technique uses GOA for hyperparameter selection process. The stimulation outcome of the SD-GOADL technique is tested on a sarcasm dataset and the results highlight the significant performance of the SD-GOADL technique compared to recent models.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02057-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting sarcasm in social media presents challenges in natural language processing (NLP) due to the informal language, contextual complexities, and nuanced expression of sentiment. Integrating sentiment analysis (SA) with sarcasm detection enhances the understanding of text meaning. Deep learning (DL), utilizing neural networks to grasp lexical and contextual features, offers a method for sarcasm detection. However, current DL-based sarcasm detection methods often overlook sentiment semantics, a crucial aspect for improving detection outcomes. Therefore, this study develops a new sarcasm detection using grasshopper optimization algorithm with DL (SD-GOADL) technique. The SD-GOADL technique aims to explore the patterns that exist in social media data and detect sarcasm. To obtain this, the SD-GOADL technique undergoes data pre-processing and Glove based word embedding technique. Next, the classification of sarcasm takes place using deep belief network (DBN) system. For enhancing the detection results of the DBN approach, the SD-GOADL technique uses GOA for hyperparameter selection process. The stimulation outcome of the SD-GOADL technique is tested on a sarcasm dataset and the results highlight the significant performance of the SD-GOADL technique compared to recent models.

Abstract Image

基于深度学习的社交媒体情感分析,通过蚱蜢优化加强讽刺检测
由于社交媒体中的语言不正规、上下文复杂以及情感表达的细微差别,因此在自然语言处理(NLP)中检测讽刺信息是一项挑战。将情感分析(SA)与讽刺检测相结合,可以增强对文本含义的理解。深度学习(DL)利用神经网络掌握词汇和上下文特征,为讽刺语言检测提供了一种方法。然而,目前基于深度学习的讽刺检测方法往往忽略了情感语义,而情感语义是提高检测结果的一个重要方面。因此,本研究利用蚱蜢优化算法和 DL(SD-GOADL)技术开发了一种新的讽刺语言检测方法。SD-GOADL 技术旨在探索社交媒体数据中存在的模式并检测讽刺信息。为此,SD-GOADL 技术采用了数据预处理和基于 Glove 的词嵌入技术。然后,使用深度信念网络(DBN)系统对讽刺进行分类。为了提高 DBN 方法的检测结果,SD-GOADL 技术在超参数选择过程中使用了 GOA。在讽刺数据集上测试了 SD-GOADL 技术的刺激结果,结果表明与最近的模型相比,SD-GOADL 技术具有显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信