Receding contact line dynamics on superhydrophobic surfaces

Lorenzo Betti, Jordy Queiros Campos, Amandine Lechantre, Lea Cailly-Brandstater, Sarra Nouma, Jérôme Fresnais, Etienne Barthel adn Yann Bouret, Xavier Noblin, Céline Cohen
{"title":"Receding contact line dynamics on superhydrophobic surfaces","authors":"Lorenzo Betti, Jordy Queiros Campos, Amandine Lechantre, Lea Cailly-Brandstater, Sarra Nouma, Jérôme Fresnais, Etienne Barthel adn Yann Bouret, Xavier Noblin, Céline Cohen","doi":"arxiv-2408.04992","DOIUrl":null,"url":null,"abstract":"We have explored receding contact line dynamics on superhydrophobic surfaces,\ncomposed of micropillars arrays. We present here dynamic receding contact angle\nmeasurements of water on such surfaces, covering contact line speeds spanning\nover five decades. We have studied the effect of pillars fraction on dynamical\nreceding contact angles. We compared these measurements to those on smooth\nsurfaces with the same chemical nature and also with similar systems reported\nin the literature. We show that superhydrophobic surfaces exhibit a significantly lower\ndependence of contact angle on contact line speed compared to smooth surfaces.\nAdditionally, we observed that a higher surface fraction of pillars leads to a\ngreater dependence of the contact angle on contact line speed, approaching the\ndependence of the angle on smooth surface. Interestingly, we show that the\nexact texuration of the surface does not play a fundamental role in the\nangle-velocity relationships as long as microtextures present the same type of\nperiodic pattern (pillar arrays or microgrid). These results are interpreted in\nterms of viscous friction reduction on superhydrophobic surfaces, shedding\nlight on the underlying mechanisms governing their unique dynamic behavior. In\naddition we show that contact angles follow same laws for two different\ngeometries (milimetric sessile drop and a centimetric capillary bridge).","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have explored receding contact line dynamics on superhydrophobic surfaces, composed of micropillars arrays. We present here dynamic receding contact angle measurements of water on such surfaces, covering contact line speeds spanning over five decades. We have studied the effect of pillars fraction on dynamical receding contact angles. We compared these measurements to those on smooth surfaces with the same chemical nature and also with similar systems reported in the literature. We show that superhydrophobic surfaces exhibit a significantly lower dependence of contact angle on contact line speed compared to smooth surfaces. Additionally, we observed that a higher surface fraction of pillars leads to a greater dependence of the contact angle on contact line speed, approaching the dependence of the angle on smooth surface. Interestingly, we show that the exact texuration of the surface does not play a fundamental role in the angle-velocity relationships as long as microtextures present the same type of periodic pattern (pillar arrays or microgrid). These results are interpreted in terms of viscous friction reduction on superhydrophobic surfaces, shedding light on the underlying mechanisms governing their unique dynamic behavior. In addition we show that contact angles follow same laws for two different geometries (milimetric sessile drop and a centimetric capillary bridge).
超疏水性表面上的后退接触线动力学
我们探索了由微柱阵列组成的超疏水表面上的后退接触线动力学。我们在此展示了水在此类表面上的动态后退接触角测量结果,涵盖了超过五十年的接触线速度。我们研究了微柱分数对动态后退接触角的影响。我们将这些测量结果与具有相同化学性质的光滑表面上的测量结果以及文献中报道的类似系统进行了比较。我们发现,与光滑表面相比,超疏水性表面的接触角对接触线速度的依赖程度明显较低。此外,我们还观察到,表面柱子的比例越高,接触角对接触线速度的依赖程度就越大,接近光滑表面接触角的依赖程度。有趣的是,我们发现只要微混合物呈现出相同类型的周期性图案(柱阵或微网格),表面的精确粗糙度在角度-速度关系中就不会起到根本性的作用。这些结果从超疏水表面粘性摩擦降低的角度进行了解释,揭示了支配其独特动态行为的基本机制。此外,我们还证明了接触角在两种不同几何形状(毫米级无柄水滴和厘米级毛细管桥)下遵循相同的规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信