Numerical simulation and analysis of mixing enhancement due to chaotic advection using an adaptive approach for approximating the dilution index

Carla Feistner, Mónica Basilio Hazas, Barbara Wohlmuth, Gabriele Chiogna
{"title":"Numerical simulation and analysis of mixing enhancement due to chaotic advection using an adaptive approach for approximating the dilution index","authors":"Carla Feistner, Mónica Basilio Hazas, Barbara Wohlmuth, Gabriele Chiogna","doi":"arxiv-2408.05055","DOIUrl":null,"url":null,"abstract":"A velocity field characterized by chaotic advection induces stretching and\nfolding processes that increase the solute-solvent interface available for\ndiffusion. Identifying chaotic flow fields with optimized mixing enhancement is\nrelevant for applications like groundwater remediation, microfluidics, and many\nmore. This work uses the dilution index to quantify the temporal increase in\nmixing of a solute within its solvent. We introduce a new approach to select a\nsuitable grid size for each time step in the dilution index approximation,\nmotivated by the theory of representative elementary volumes. It preserves the\ncentral feature of the dilution index, which is monotonically increasing in\ntime and hence leads to reliable results. Our analysis highlights the\nimportance of a suitable choice for the grid size in the dilution index\napproximation. We use this approach to demonstrate the mixing enhancement for\ntwo chaotic injection-extraction systems that exhibit chaotic structures: a\nsource-sink dipole and a rotated potential mixing. By analyzing the chaotic\nflow fields, we identify Kolmogorov--Arnold--Moser (KAM) islands, non-mixing\nregions that limit the chaotic area in the domain and, thereby, the mixing\nenhancement. Using our new approach, we assess the choice of design parameters\nof the injection-extraction systems to effectively engineer chaotic mixing. We\ndemonstrate the important role of diffusion in filling the KAM islands and\nreaching complete mixing in the systems.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A velocity field characterized by chaotic advection induces stretching and folding processes that increase the solute-solvent interface available for diffusion. Identifying chaotic flow fields with optimized mixing enhancement is relevant for applications like groundwater remediation, microfluidics, and many more. This work uses the dilution index to quantify the temporal increase in mixing of a solute within its solvent. We introduce a new approach to select a suitable grid size for each time step in the dilution index approximation, motivated by the theory of representative elementary volumes. It preserves the central feature of the dilution index, which is monotonically increasing in time and hence leads to reliable results. Our analysis highlights the importance of a suitable choice for the grid size in the dilution index approximation. We use this approach to demonstrate the mixing enhancement for two chaotic injection-extraction systems that exhibit chaotic structures: a source-sink dipole and a rotated potential mixing. By analyzing the chaotic flow fields, we identify Kolmogorov--Arnold--Moser (KAM) islands, non-mixing regions that limit the chaotic area in the domain and, thereby, the mixing enhancement. Using our new approach, we assess the choice of design parameters of the injection-extraction systems to effectively engineer chaotic mixing. We demonstrate the important role of diffusion in filling the KAM islands and reaching complete mixing in the systems.
使用近似稀释指数的自适应方法对混沌平流引起的混合增强进行数值模拟和分析
以混沌平流为特征的速度场会诱发拉伸和折叠过程,从而增加可用于扩散的溶质-溶剂界面。识别具有优化混合增强功能的混沌流场与地下水修复、微流体等应用息息相关。这项研究利用稀释指数来量化溶质在其溶剂中混合的时间性增加。受代表性基本体积理论的启发,我们引入了一种新方法,为稀释指数近似中的每个时间步选择合适的网格大小。这种方法保留了稀释指数的中心特征,即在时间内单调递增,从而得出可靠的结果。我们的分析强调了在稀释指数逼近中选择合适的网格大小的重要性。我们用这种方法演示了两个混沌注入-萃取系统的混合增强,这两个系统都表现出混沌结构:源-汇偶极子和旋转势混合。通过分析混沌流场,我们确定了柯尔莫哥洛夫--阿诺德--莫泽(KAM)岛,这些非混合区域限制了场域中的混沌区域,从而限制了混合增强。利用我们的新方法,我们评估了注入-萃取系统设计参数的选择,以有效地设计混沌混合。我们证明了扩散在填充 KAM 岛和实现系统完全混合中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信