{"title":"Bayesian Experimental Design for Head Imaging by Electrical Impedance Tomography","authors":"N. Hyvönen, A. Jääskeläinen, R. Maity, A. Vavilov","doi":"10.1137/23m1624634","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1718-1741, August 2024. <br/> Abstract. This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1624634","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1718-1741, August 2024. Abstract. This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.