The Giroux Correspondence in dimension 3

Joan Licata, Vera Vértesi
{"title":"The Giroux Correspondence in dimension 3","authors":"Joan Licata, Vera Vértesi","doi":"arxiv-2408.01079","DOIUrl":null,"url":null,"abstract":"In an earlier paper, the authors proved the Giroux Correspondence for tight\ncontact $3$-manifolds via convex Heegaard surfaces. Simultaneously, Breen,\nHonda and Huang gave an all-dimensions proof of the Giroux Correspondence by\ngeneralising convex surface theory to higher dimensions. This paper uses a key\nresult about relations of bypasses to complete the $3$-dimensional proof for\narbitrary (not necessarily tight) contact 3-manifolds. This presentation\nfeatures low-dimensional techniques and further clarifies the relationship\nbetween contact manifolds and their Heegaard splittings.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an earlier paper, the authors proved the Giroux Correspondence for tight contact $3$-manifolds via convex Heegaard surfaces. Simultaneously, Breen, Honda and Huang gave an all-dimensions proof of the Giroux Correspondence by generalising convex surface theory to higher dimensions. This paper uses a key result about relations of bypasses to complete the $3$-dimensional proof for arbitrary (not necessarily tight) contact 3-manifolds. This presentation features low-dimensional techniques and further clarifies the relationship between contact manifolds and their Heegaard splittings.
维度 3 中的吉鲁通信
在早先的一篇论文中,作者通过凸 Heegaard 曲面证明了紧密接触 3$-manifolds 的 Giroux 对应关系。与此同时,布林、本田和黄通过将凸面理论推广到更高维度,给出了吉鲁对应关系的全维度证明。本文利用关于旁路关系的关键结果,完成了任意(不一定紧密)接触三芒形的 3 美元维证明。本报告以低维技术为特色,进一步阐明了接触流形与它们的 Heegaard 分裂之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信