Thurston geodesics: no backtracking and active intervals

Anna Lenzhen, Babak Modami, Kasra Rafi, Jing Tao
{"title":"Thurston geodesics: no backtracking and active intervals","authors":"Anna Lenzhen, Babak Modami, Kasra Rafi, Jing Tao","doi":"arxiv-2408.01632","DOIUrl":null,"url":null,"abstract":"We develop the notion of the active interval for a subsurface along a\ngeodesic in the Thurston metric on Teichmuller space of a surface S. That is,\nfor any geodesic in the Thurston metric and any subsurface R of S, we find an\ninterval of times where the length of the boundary of R is uniformly bounded\nand the restriction of the geodesic to the subsurface R resembles a geodesic in\nthe Teichmuller space of R. In particular, the set of short curves in R during\nthe active interval represents a reparametrized quasi-geodesic in the curve\ngraph of R (no backtracking) and the amount of movement in the curve graph of R\noutside of the active interval is uniformly bounded which justifies the name\nactive interval. These intervals provide an analogue of the active intervals\nintroduced by the third author in the setting of Teichmuller space equipped\nwith the Teichmuller metric.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the notion of the active interval for a subsurface along a geodesic in the Thurston metric on Teichmuller space of a surface S. That is, for any geodesic in the Thurston metric and any subsurface R of S, we find an interval of times where the length of the boundary of R is uniformly bounded and the restriction of the geodesic to the subsurface R resembles a geodesic in the Teichmuller space of R. In particular, the set of short curves in R during the active interval represents a reparametrized quasi-geodesic in the curve graph of R (no backtracking) and the amount of movement in the curve graph of R outside of the active interval is uniformly bounded which justifies the name active interval. These intervals provide an analogue of the active intervals introduced by the third author in the setting of Teichmuller space equipped with the Teichmuller metric.
瑟斯顿大地线:无回溯和活动区间
我们发展了沿曲面 S 的 Teichmuller 空间上 Thurston 度量中的测地线的子曲面的活动区间的概念。也就是说,对于 Thurston 度量中的任何测地线和 S 的任何子曲面 R,我们都能找到一个时间区间,在这个区间中 R 的边界长度是均匀有界的,并且测地线对子曲面 R 的限制类似于 R 的 Teichmuller 空间中的测地线。特别是,在活动区间内,R 中的短曲线集代表了 R 曲线图中的重参数化准大地线(无回溯),并且在活动区间外的路由曲线图中的移动量是均匀有界的,这也是活动区间名称的由来。这些区间与第三位作者在配备了 Teichmuller 度量的 Teichmuller 空间中引入的活动区间类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信