Classifying the surface-knot modules

Akio Kawauchi
{"title":"Classifying the surface-knot modules","authors":"Akio Kawauchi","doi":"arxiv-2408.04285","DOIUrl":null,"url":null,"abstract":"The $k$th module of a surface-knot of a genus $g$ in the 4-sphere is the $k$th integral homology module of the infinite cyclic covering of the\nsurface-knot complement. The reduced first module is the quotient module of the first\nmodule by the finite sub-module defining the torsion linking. It is shown that the reduced first\nmodule for every genus $g$ is characterized in terms of properties of a finitely generated\nmodule. As a by-product, a concrete example of the fundamental group of a surface-knot of\ngenus $g$ which is not the fundamental group of any surface-knot of genus $g-1$ is\ngiven for every $g>0$. The torsion part and the torsion-free part of the second module are\ndetermined by the reduced first module and the genus-class on the reduced first module. The\nthird module vanishes. The concept of an exact leaf of a surface-knot is introduced, whose\nlinking is an orthogonal sum of the torsion linking and a hyperbolic linking.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $k$th module of a surface-knot of a genus $g$ in the 4-sphere is the $k$th integral homology module of the infinite cyclic covering of the surface-knot complement. The reduced first module is the quotient module of the first module by the finite sub-module defining the torsion linking. It is shown that the reduced first module for every genus $g$ is characterized in terms of properties of a finitely generated module. As a by-product, a concrete example of the fundamental group of a surface-knot of genus $g$ which is not the fundamental group of any surface-knot of genus $g-1$ is given for every $g>0$. The torsion part and the torsion-free part of the second module are determined by the reduced first module and the genus-class on the reduced first module. The third module vanishes. The concept of an exact leaf of a surface-knot is introduced, whose linking is an orthogonal sum of the torsion linking and a hyperbolic linking.
面结模块的分类
4球中g$属的面结的第k$个模块是面结补集的无限循环覆盖的第k$个积分同调模块。还原第一模块是第一模块的商模块,由定义扭转链接的有限子模块构成。结果表明,每个属$g$的还原第一模块都可以用有限生成模块的性质来描述。作为副产品,给出了属$g$的面结的基群的一个具体例子,它不是属$g-1$的任何面结的基群。第二模块的扭转部分和无扭转部分由还原的第一模块和还原的第一模块上的属类决定。第三模块消失。引入了曲面结的精确叶的概念,其连接是扭转连接与双曲连接的正交和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信