Habib Ammari, Silvio Barandun, Bryn Davies, Erik Orvehed Hiltunen, Ping Liu
{"title":"Stability of the Non-Hermitian Skin Effect in One Dimension","authors":"Habib Ammari, Silvio Barandun, Bryn Davies, Erik Orvehed Hiltunen, Ping Liu","doi":"10.1137/23m1610537","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1697-1717, August 2024. <br/> Abstract. This paper shows both analytically and numerically that the skin effect in systems of non-Hermitian subwavelength resonators is robust with respect to random imperfections in the system. The subwavelength resonators are highly contrasting material inclusions that resonate in a low-frequency regime. The non-Hermiticity is due to the introduction of a directional damping term (motivated by an imaginary gauge potential), which leads to a skin effect that is manifested by the system’s eigenmodes accumulating at one edge of the structure. We elucidate the topological protection of the associated (real) eigenfrequencies and illustrate numerically the competition between the two different localization effects present when the system is randomly perturbed: the non-Hermitian skin effect and the disorder-induced Anderson localization. We show numerically that, as the strength of the disorder increases, more and more eigenmodes become localized in the bulk. Our results are based on an asymptotic matrix model for subwavelength physics and can be generalized also to tight-binding models in condensed matter theory.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1610537","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1697-1717, August 2024. Abstract. This paper shows both analytically and numerically that the skin effect in systems of non-Hermitian subwavelength resonators is robust with respect to random imperfections in the system. The subwavelength resonators are highly contrasting material inclusions that resonate in a low-frequency regime. The non-Hermiticity is due to the introduction of a directional damping term (motivated by an imaginary gauge potential), which leads to a skin effect that is manifested by the system’s eigenmodes accumulating at one edge of the structure. We elucidate the topological protection of the associated (real) eigenfrequencies and illustrate numerically the competition between the two different localization effects present when the system is randomly perturbed: the non-Hermitian skin effect and the disorder-induced Anderson localization. We show numerically that, as the strength of the disorder increases, more and more eigenmodes become localized in the bulk. Our results are based on an asymptotic matrix model for subwavelength physics and can be generalized also to tight-binding models in condensed matter theory.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.