YOLO-LF: a lightweight multi-scale feature fusion algorithm for wheat spike detection

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuren Zhou, Shengzhen Long
{"title":"YOLO-LF: a lightweight multi-scale feature fusion algorithm for wheat spike detection","authors":"Shuren Zhou, Shengzhen Long","doi":"10.1007/s11554-024-01529-2","DOIUrl":null,"url":null,"abstract":"<p>Wheat is one of the most significant crops in China, as its yield directly affects the country’s food security. Due to its dense, overlapping, and relatively fuzzy distribution, wheat spikes are prone to being missed in practical detection. Existing object detection models suffer from large model size, high computational complexity, and long computation times. Consequently, this study proposes a lightweight real-time wheat spike detection model called YOLO-LF. Initially, a lightweight backbone network is improved to reduce the model size and lower the number of parameters, thereby improving the runtime speed. Second, the structure of the neck is redesigned in the context of the wheat spike dataset to enhance the feature extraction capability of the network for wheat spikes and to achieve lightweightness. Finally, a lightweight detection head was designed to significantly reduce the FLOPs of the model and achieve further lightweighting. Experimental results on the test set indicate that the size of our model is 1.7 MB, the number of parameters is 0.76 M, and the FLOPs are 2.9, which represent reductions of 73, 74, and 64% compared to YOLOv8n, respectively. Our model demonstrates a latency of 8.6 ms and an FPS of 115 on Titan X, whereas YOLOv8n has a latency of 10.2 ms and an FPS of 97 on the same hardware. In contrast, our model is more lightweight and faster to detect, while the mAP@0.5 only decreases by 0.9%, outperforming YOLOv8 and other mainstream detection networks in overall performance. Consequently, our model can be deployed on mobile devices to provide effective assistance in the real-time detection of wheat spikes.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01529-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat is one of the most significant crops in China, as its yield directly affects the country’s food security. Due to its dense, overlapping, and relatively fuzzy distribution, wheat spikes are prone to being missed in practical detection. Existing object detection models suffer from large model size, high computational complexity, and long computation times. Consequently, this study proposes a lightweight real-time wheat spike detection model called YOLO-LF. Initially, a lightweight backbone network is improved to reduce the model size and lower the number of parameters, thereby improving the runtime speed. Second, the structure of the neck is redesigned in the context of the wheat spike dataset to enhance the feature extraction capability of the network for wheat spikes and to achieve lightweightness. Finally, a lightweight detection head was designed to significantly reduce the FLOPs of the model and achieve further lightweighting. Experimental results on the test set indicate that the size of our model is 1.7 MB, the number of parameters is 0.76 M, and the FLOPs are 2.9, which represent reductions of 73, 74, and 64% compared to YOLOv8n, respectively. Our model demonstrates a latency of 8.6 ms and an FPS of 115 on Titan X, whereas YOLOv8n has a latency of 10.2 ms and an FPS of 97 on the same hardware. In contrast, our model is more lightweight and faster to detect, while the mAP@0.5 only decreases by 0.9%, outperforming YOLOv8 and other mainstream detection networks in overall performance. Consequently, our model can be deployed on mobile devices to provide effective assistance in the real-time detection of wheat spikes.

Abstract Image

YOLO-LF:用于小麦穗检测的轻量级多尺度特征融合算法
小麦是中国最重要的农作物之一,其产量直接影响到国家的粮食安全。由于麦穗分布密集、重叠且相对模糊,在实际检测中很容易被遗漏。现有的物体检测模型存在模型体积大、计算复杂度高、计算时间长等问题。因此,本研究提出了一种名为 YOLO-LF 的轻量级实时麦穗检测模型。首先,改进了轻量级骨干网络,减小了模型体积,降低了参数数量,从而提高了运行速度。其次,根据小麦穗数据集重新设计了颈部结构,以增强网络对小麦穗的特征提取能力,实现轻量化。最后,设计了一个轻量级检测头,大大减少了模型的 FLOPs,实现了进一步的轻量化。测试集上的实验结果表明,我们的模型大小为 1.7 MB,参数数为 0.76 M,FLOPs 为 2.9,与 YOLOv8n 相比分别减少了 73%、74% 和 64%。我们的模型在 Titan X 上的延迟为 8.6 毫秒,FPS 为 115,而 YOLOv8n 在相同硬件上的延迟为 10.2 毫秒,FPS 为 97。相比之下,我们的模型更轻便,检测速度更快,而 mAP@0.5 仅降低了 0.9%,整体性能优于 YOLOv8 和其他主流检测网络。因此,我们的模型可以部署在移动设备上,为实时检测麦穗提供有效帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信