{"title":"Local thermal expansion of Co-containing invar alloys","authors":"Toshihiko Yokoyama, Hiromichi T. Fujii, Shingo Matsumura, Naoki Sakaguchi, Naoya Kurahashi, Naoyuki Maejima","doi":"10.1103/physrevmaterials.8.083603","DOIUrl":null,"url":null,"abstract":"Thermal expansion of Co-containing invar alloys of GX1Ni29-Co17 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>54</mn></msub><msub><mi>Co</mi><mn>17</mn></msub><msub><mi>Ni</mi><mn>29</mn></msub></mrow></math> and stainless invar <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>39</mn></msub><msub><mi>Co</mi><mn>50</mn></msub><msub><mi>Cr</mi><mn>9</mn></msub><msub><mi>Ni</mi><mn>2</mn></msub></mrow></math> was investigated from the viewpoint of local structure by analyzing temperature-dependent extended x-ray absorption fine-structure (EXAFS) spectra combined with the computational simulations based on the path-integral effective classical potential (PIECP) method. For detailed comparative discussion, FeNi invar alloys of 36invar, 42invar, and 45invar were also examined. It is found by EXAFS that in stainless invar, Co exhibits a noticeable invar effect, while the invar effect on Co in GX1Ni29-Co17 is negligibly small. The PIECP simulations provide qualitative agreement with this finding, exemplifying that the Co magnetization is more effectively suppressed in stainless invar with a temperature rise, because of a smaller lattice constant and shorter corresponding interatomic distances. The present study clearly demonstrates the importance of the local structural point of view to understand the detailed low thermal expansion mechanism, in which microscopic local thermal expansion often meaningfully differs from macroscopic lattice thermal expansion.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.083603","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal expansion of Co-containing invar alloys of GX1Ni29-Co17 and stainless invar was investigated from the viewpoint of local structure by analyzing temperature-dependent extended x-ray absorption fine-structure (EXAFS) spectra combined with the computational simulations based on the path-integral effective classical potential (PIECP) method. For detailed comparative discussion, FeNi invar alloys of 36invar, 42invar, and 45invar were also examined. It is found by EXAFS that in stainless invar, Co exhibits a noticeable invar effect, while the invar effect on Co in GX1Ni29-Co17 is negligibly small. The PIECP simulations provide qualitative agreement with this finding, exemplifying that the Co magnetization is more effectively suppressed in stainless invar with a temperature rise, because of a smaller lattice constant and shorter corresponding interatomic distances. The present study clearly demonstrates the importance of the local structural point of view to understand the detailed low thermal expansion mechanism, in which microscopic local thermal expansion often meaningfully differs from macroscopic lattice thermal expansion.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.