{"title":"Tuning the electronic structure of monolayer MoS2 towards metal like via vanadium doping","authors":"Dipak Maity, Rahul Sharma, Krishna Rani Sahoo, Ashique Lal, Raul Arenal, Tharangattu N. Narayanan","doi":"10.1103/physrevmaterials.8.084002","DOIUrl":null,"url":null,"abstract":"Doping of two-dimensional layered semiconducting materials is becoming pivotal in tailoring their electronic properties, enabling the development of advanced electronic and optoelectronic devices, where the selection of dopant is important. Here, we demonstrate the potential of substitutional vanadium (V) doping in monolayer molybdenum disulfide (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Mo</mi><msub><mi mathvariant=\"normal\">S</mi><mn>2</mn></msub></mrow></math>) lattice in different extents leading to tunable electronic and optoelectronic properties. We found that low-level V doping (∼1 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>at.</mtext><mspace width=\"0.16em\"></mspace><mo>%</mo></mrow></math>) induces <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-type characteristics in otherwise <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-type monolayer <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Mo</mi><msub><mi mathvariant=\"normal\">S</mi><mn>2</mn></msub></mrow></math>, whereas medium-level doping (∼5 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>at.</mtext><mspace width=\"0.16em\"></mspace><mo>%</mo></mrow></math>) leads to an ambipolar semiconductor. Degenerately doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Mo</mi><msub><mi mathvariant=\"normal\">S</mi><mn>2</mn></msub></mrow></math> (∼9 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>at.</mtext><mspace width=\"0.16em\"></mspace><mo>%</mo></mrow></math>) facilitates a transition from semiconducting towards metallic (metal-like) with reduced electrical resistivity (∼4.5 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">Ω</mi><mspace width=\"0.16em\"></mspace><mtext>m</mtext></mrow></math> of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Mo</mi><msub><mi mathvariant=\"normal\">S</mi><mn>2</mn></msub></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>∼</mo><mn>2.2</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mi mathvariant=\"normal\">Ω</mi><mspace width=\"0.16em\"></mspace><mtext>m</mtext></mrow></math>), low activation energy for transport (∼11 meV), and electric field independent drain current in field effect transistor–based transfer characteristics. A detailed temperature- and power-dependent photoluminescence study along with density functional theory–based calculations in support unravels the emergence of an excitonic transition at ∼850 nm with its intensity dependent on the amount of vanadium. This study shows the potential of V doping in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Mo</mi><msub><mi mathvariant=\"normal\">S</mi><mn>2</mn></msub></mrow></math> for generating multifunctional two-dimensional materials for next generation electronics, optoelectronics, and interconnects with systematic control over its electronic structure in a wide range.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"59 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Doping of two-dimensional layered semiconducting materials is becoming pivotal in tailoring their electronic properties, enabling the development of advanced electronic and optoelectronic devices, where the selection of dopant is important. Here, we demonstrate the potential of substitutional vanadium (V) doping in monolayer molybdenum disulfide () lattice in different extents leading to tunable electronic and optoelectronic properties. We found that low-level V doping (∼1 ) induces -type characteristics in otherwise -type monolayer , whereas medium-level doping (∼5 ) leads to an ambipolar semiconductor. Degenerately doped (∼9 ) facilitates a transition from semiconducting towards metallic (metal-like) with reduced electrical resistivity (∼4.5 of to ), low activation energy for transport (∼11 meV), and electric field independent drain current in field effect transistor–based transfer characteristics. A detailed temperature- and power-dependent photoluminescence study along with density functional theory–based calculations in support unravels the emergence of an excitonic transition at ∼850 nm with its intensity dependent on the amount of vanadium. This study shows the potential of V doping in for generating multifunctional two-dimensional materials for next generation electronics, optoelectronics, and interconnects with systematic control over its electronic structure in a wide range.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.