{"title":"Computing the thermal transport coefficient of neutral amorphous polymers using exact vibrational density of states: Comparison with experiments","authors":"Debashish Mukherji","doi":"10.1103/physrevmaterials.8.085601","DOIUrl":null,"url":null,"abstract":"Thermal transport coefficient <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> is an important property that often dictates broad applications of a polymeric material, while at the same time its computation remains challenging. In particular, classical simulations overestimate the measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> in comparison to those of the experiments and thus hinder their meaningful comparison. This is even when very careful simulations are performed using the most accurate empirical potentials. A key reason for such a discrepancy is because polymers have quantum-mechanical, nuclear degrees of freedom whose contribution to the heat balance is nontrivial. In this work, two semianalytical approaches are considered to accurately compute <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> by using the exact vibrational density of states <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>g</mi><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></math>. The first approach is based within the framework of the minimum thermal conductivity model, while the second uses computed quantum heat capacity to scale <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math>. The computed <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> of a set of commodity polymers compares quantitatively with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>κ</mi><mi>expt</mi></msup></math>.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.085601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal transport coefficient is an important property that often dictates broad applications of a polymeric material, while at the same time its computation remains challenging. In particular, classical simulations overestimate the measurements of in comparison to those of the experiments and thus hinder their meaningful comparison. This is even when very careful simulations are performed using the most accurate empirical potentials. A key reason for such a discrepancy is because polymers have quantum-mechanical, nuclear degrees of freedom whose contribution to the heat balance is nontrivial. In this work, two semianalytical approaches are considered to accurately compute by using the exact vibrational density of states . The first approach is based within the framework of the minimum thermal conductivity model, while the second uses computed quantum heat capacity to scale . The computed of a set of commodity polymers compares quantitatively with .
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.