MultiColor: Image Colorization by Learning from Multiple Color Spaces

Xiangcheng Du, Zhao Zhou, Yanlong Wang, Zhuoyao Wang, Yingbin Zheng, Cheng Jin
{"title":"MultiColor: Image Colorization by Learning from Multiple Color Spaces","authors":"Xiangcheng Du, Zhao Zhou, Yanlong Wang, Zhuoyao Wang, Yingbin Zheng, Cheng Jin","doi":"arxiv-2408.04172","DOIUrl":null,"url":null,"abstract":"Deep networks have shown impressive performance in the image restoration\ntasks, such as image colorization. However, we find that previous approaches\nrely on the digital representation from single color model with a specific\nmapping function, a.k.a., color space, during the colorization pipeline. In\nthis paper, we first investigate the modeling of different color spaces, and\nfind each of them exhibiting distinctive characteristics with unique\ndistribution of colors. The complementarity among multiple color spaces leads\nto benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically\ncolorize grayscale images that combines clues from multiple color spaces.\nSpecifically, we employ a set of dedicated colorization modules for individual\ncolor space. Within each module, a transformer decoder is first employed to\nrefine color query embeddings and then a color mapper produces color channel\nprediction using the embeddings and semantic features. With these predicted\ncolor channels representing various color spaces, a complementary network is\ndesigned to exploit the complementarity and generate pleasing and reasonable\ncolorized images. We conduct extensive experiments on real-world datasets, and\nthe results demonstrate superior performance over the state-of-the-arts.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep networks have shown impressive performance in the image restoration tasks, such as image colorization. However, we find that previous approaches rely on the digital representation from single color model with a specific mapping function, a.k.a., color space, during the colorization pipeline. In this paper, we first investigate the modeling of different color spaces, and find each of them exhibiting distinctive characteristics with unique distribution of colors. The complementarity among multiple color spaces leads to benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically colorize grayscale images that combines clues from multiple color spaces. Specifically, we employ a set of dedicated colorization modules for individual color space. Within each module, a transformer decoder is first employed to refine color query embeddings and then a color mapper produces color channel prediction using the embeddings and semantic features. With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images. We conduct extensive experiments on real-world datasets, and the results demonstrate superior performance over the state-of-the-arts.
多色:通过学习多种色彩空间实现图像着色
深度网络在图像修复任务(如图像着色)中表现出令人印象深刻的性能。然而,我们发现,以往的方法主要是在着色过程中,用特定的映射函数(又称色彩空间)从单一色彩模型中进行数字表示。在本文中,我们首先研究了不同色彩空间的建模,发现每个色彩空间都具有独特的色彩分布特征。多种色彩空间之间的互补性为图像着色任务带来了好处。我们提出的 MultiColor 是一种新的基于学习的灰度图像自动着色方法,它结合了来自多个色彩空间的线索。在每个模块中,首先使用变压器解码器来完善颜色查询嵌入,然后使用颜色映射器利用嵌入和语义特征生成颜色通道预测。有了这些代表不同色彩空间的预测色彩通道,就可以设计一个互补网络,利用互补性生成悦目、合理的彩色图像。我们在真实世界的数据集上进行了广泛的实验,结果表明其性能优于同行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信