MM-Forecast: A Multimodal Approach to Temporal Event Forecasting with Large Language Models

Haoxuan Li, Zhengmao Yang, Yunshan Ma, Yi Bin, Yang Yang, Tat-Seng Chua
{"title":"MM-Forecast: A Multimodal Approach to Temporal Event Forecasting with Large Language Models","authors":"Haoxuan Li, Zhengmao Yang, Yunshan Ma, Yi Bin, Yang Yang, Tat-Seng Chua","doi":"arxiv-2408.04388","DOIUrl":null,"url":null,"abstract":"We study an emerging and intriguing problem of multimodal temporal event\nforecasting with large language models. Compared to using text or graph\nmodalities, the investigation of utilizing images for temporal event\nforecasting has not been fully explored, especially in the era of large\nlanguage models (LLMs). To bridge this gap, we are particularly interested in\ntwo key questions of: 1) why images will help in temporal event forecasting,\nand 2) how to integrate images into the LLM-based forecasting framework. To\nanswer these research questions, we propose to identify two essential functions\nthat images play in the scenario of temporal event forecasting, i.e.,\nhighlighting and complementary. Then, we develop a novel framework, named\nMM-Forecast. It employs an Image Function Identification module to recognize\nthese functions as verbal descriptions using multimodal large language models\n(MLLMs), and subsequently incorporates these function descriptions into\nLLM-based forecasting models. To evaluate our approach, we construct a new\nmultimodal dataset, MidEast-TE-mm, by extending an existing event dataset\nMidEast-TE-mini with images. Empirical studies demonstrate that our MM-Forecast\ncan correctly identify the image functions, and further more, incorporating\nthese verbal function descriptions significantly improves the forecasting\nperformance. The dataset, code, and prompts are available at\nhttps://github.com/LuminosityX/MM-Forecast.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study an emerging and intriguing problem of multimodal temporal event forecasting with large language models. Compared to using text or graph modalities, the investigation of utilizing images for temporal event forecasting has not been fully explored, especially in the era of large language models (LLMs). To bridge this gap, we are particularly interested in two key questions of: 1) why images will help in temporal event forecasting, and 2) how to integrate images into the LLM-based forecasting framework. To answer these research questions, we propose to identify two essential functions that images play in the scenario of temporal event forecasting, i.e., highlighting and complementary. Then, we develop a novel framework, named MM-Forecast. It employs an Image Function Identification module to recognize these functions as verbal descriptions using multimodal large language models (MLLMs), and subsequently incorporates these function descriptions into LLM-based forecasting models. To evaluate our approach, we construct a new multimodal dataset, MidEast-TE-mm, by extending an existing event dataset MidEast-TE-mini with images. Empirical studies demonstrate that our MM-Forecast can correctly identify the image functions, and further more, incorporating these verbal function descriptions significantly improves the forecasting performance. The dataset, code, and prompts are available at https://github.com/LuminosityX/MM-Forecast.
MM-Forecast:利用大型语言模型进行时态事件预测的多模态方法
我们研究了利用大型语言模型进行多模态时态事件预测这一新兴而有趣的问题。与使用文本或图形模态相比,利用图像进行时间事件预测的研究尚未得到充分探索,尤其是在大型语言模型(LLM)时代。为了弥补这一差距,我们对以下两个关键问题特别感兴趣:1) 为什么图像有助于时间事件预测,以及 2) 如何将图像集成到基于 LLM 的预测框架中。为了回答这些研究问题,我们建议确定图像在时间事件预测场景中发挥的两个基本功能,即突出和补充功能。然后,我们开发了一个名为 "MM-Forecast "的新型框架。它采用图像功能识别模块,利用多模态大语言模型(MLLMs)将这些功能识别为口头描述,然后将这些功能描述纳入基于LLM 的预测模型。为了评估我们的方法,我们通过用图像扩展现有的事件数据集 MidEast-TE-mini,构建了一个新的多模态数据集 MidEast-TE-mm。实证研究表明,我们的 MM-Forecast 可以正确识别图像函数,而且,加入这些口头函数描述可以显著提高预测性能。数据集、代码和提示可在https://github.com/LuminosityX/MM-Forecast。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信