Emotional Cues Extraction and Fusion for Multi-modal Emotion Prediction and Recognition in Conversation

Haoxiang Shi, Ziqi Liang, Jun Yu
{"title":"Emotional Cues Extraction and Fusion for Multi-modal Emotion Prediction and Recognition in Conversation","authors":"Haoxiang Shi, Ziqi Liang, Jun Yu","doi":"arxiv-2408.04547","DOIUrl":null,"url":null,"abstract":"Emotion Prediction in Conversation (EPC) aims to forecast the emotions of\nforthcoming utterances by utilizing preceding dialogues. Previous EPC\napproaches relied on simple context modeling for emotion extraction,\noverlooking fine-grained emotion cues at the word level. Additionally, prior\nworks failed to account for the intrinsic differences between modalities,\nresulting in redundant information. To overcome these limitations, we propose\nan emotional cues extraction and fusion network, which consists of two stages:\na modality-specific learning stage that utilizes word-level labels and prosody\nlearning to construct emotion embedding spaces for each modality, and a\ntwo-step fusion stage for integrating multi-modal features. Moreover, the\nemotion features extracted by our model are also applicable to the Emotion\nRecognition in Conversation (ERC) task. Experimental results validate the\nefficacy of the proposed method, demonstrating superior performance on both\nIEMOCAP and MELD datasets.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion Prediction in Conversation (EPC) aims to forecast the emotions of forthcoming utterances by utilizing preceding dialogues. Previous EPC approaches relied on simple context modeling for emotion extraction, overlooking fine-grained emotion cues at the word level. Additionally, prior works failed to account for the intrinsic differences between modalities, resulting in redundant information. To overcome these limitations, we propose an emotional cues extraction and fusion network, which consists of two stages: a modality-specific learning stage that utilizes word-level labels and prosody learning to construct emotion embedding spaces for each modality, and a two-step fusion stage for integrating multi-modal features. Moreover, the emotion features extracted by our model are also applicable to the Emotion Recognition in Conversation (ERC) task. Experimental results validate the efficacy of the proposed method, demonstrating superior performance on both IEMOCAP and MELD datasets.
提取和融合情感线索,实现对话中的多模态情感预测和识别
对话中的情绪预测(EPC)旨在通过利用之前的对话来预测接下来话语中的情绪。以前的情感预测方法依赖于简单的语境建模来提取情感,忽略了单词层面的细粒度情感线索。此外,之前的研究未能考虑到不同模态之间的内在差异,导致信息冗余。为了克服这些局限性,我们提出了一种情感线索提取和融合网络,它由两个阶段组成:一个是特定模态学习阶段,利用词级标签和拟声学习来构建每种模态的情感嵌入空间;另一个是两步融合阶段,用于整合多模态特征。此外,我们的模型提取的情感特征也适用于对话中的情感识别(ERC)任务。实验结果验证了所提方法的有效性,在 IEMOCAP 和 MELD 数据集上都表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信