New critical point theorem and infinitely many normalized small-magnitude solutions of mass supercritical Schrödinger equations

Shaowei Chen
{"title":"New critical point theorem and infinitely many normalized small-magnitude solutions of mass supercritical Schrödinger equations","authors":"Shaowei Chen","doi":"10.1007/s00030-024-00988-7","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the existence of solutions <span>\\((\\lambda , u) \\in \\mathbb {R} \\times H^1(\\mathbb {R}^N)\\)</span> to the Schrödinger equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u+V(x)u+\\lambda u=|u|^{p-2}u,\\quad x\\in \\mathbb {R}^{N},\\\\ \\int _{\\mathbb {R}^N}|u|^2=a, \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(N\\ge 2\\)</span>, <span>\\(a&gt;0\\)</span> is a constant and <i>p</i> satisfies <span>\\(2+4/N&lt;p&lt;+\\infty \\)</span>. The potential <i>V</i> satisfies the condition that the operator <span>\\(-\\Delta +V\\)</span> contains infinitely many isolated eigenvalues with an accumulation point. We prove that this equation has a sequence of solutions <span>\\(\\{(\\lambda _m, u_m)\\}\\)</span> such that <span>\\(\\Vert u_m\\Vert _{L^\\infty (\\mathbb {R}^N)}\\rightarrow 0\\)</span> as <span>\\(m\\rightarrow \\infty \\)</span>. The proof is provided by establishing a new critical point theorem without the typical Palais–Smale condition.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00988-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the existence of solutions \((\lambda , u) \in \mathbb {R} \times H^1(\mathbb {R}^N)\) to the Schrödinger equation

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+V(x)u+\lambda u=|u|^{p-2}u,\quad x\in \mathbb {R}^{N},\\ \int _{\mathbb {R}^N}|u|^2=a, \end{array} \right. \end{aligned}$$

where \(N\ge 2\), \(a>0\) is a constant and p satisfies \(2+4/N<p<+\infty \). The potential V satisfies the condition that the operator \(-\Delta +V\) contains infinitely many isolated eigenvalues with an accumulation point. We prove that this equation has a sequence of solutions \(\{(\lambda _m, u_m)\}\) such that \(\Vert u_m\Vert _{L^\infty (\mathbb {R}^N)}\rightarrow 0\) as \(m\rightarrow \infty \). The proof is provided by establishing a new critical point theorem without the typical Palais–Smale condition.

质量超临界薛定谔方程的新临界点定理和无限多归一化小幅解
在本研究中,我们研究了薛定谔方程 $$\begin{aligned} 的解((\lambda , u) \in \mathbb {R} \times H^1(\mathbb {R}^N)\) 的存在性。-Delta u+V(x)u+lambda u=|u|^{p-2}u,\quad x\in \mathbb {R}^{N},\\int _\mathbb {R}^{N}|u|^2=a,\end{array}.\right.\end{aligned}$where \(N\ge 2\), \(a>0\) is a constant and p satisfies \(2+4/N<p<+\infty \)。势 V 满足这样一个条件,即算子 \(-\Delta +V\) 包含无限多个孤立的特征值,并有一个累积点。我们证明这个方程有一连串的解 \(\{(\lambda _m, u_m)\}\) such that \(\Vert u_m\Vert _{L\^infty (\mathbb {R}^N)}\rightarrow 0\) as \(m\rightarrow \infty \)。证明的方法是建立一个新的临界点定理,而不需要典型的 Palais-Smale 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信