Divisors and curves on logarithmic mapping spaces

Patrick Kennedy-Hunt, Navid Nabijou, Qaasim Shafi, Wanlong Zheng
{"title":"Divisors and curves on logarithmic mapping spaces","authors":"Patrick Kennedy-Hunt, Navid Nabijou, Qaasim Shafi, Wanlong Zheng","doi":"10.1007/s00029-024-00956-0","DOIUrl":null,"url":null,"abstract":"<p>We determine the rational class and Picard groups of the moduli space of stable logarithmic maps in genus zero, with target projective space relative a hyperplane. For the class group we exhibit an explicit basis consisting of boundary divisors. For the Picard group we exhibit a spanning set indexed by piecewise-linear functions on the tropicalisation. In both cases a complete set of boundary relations is obtained by pulling back the WDVV relations from the space of stable curves. Our proofs hinge on a controlled technique for manufacturing test curves in logarithmic mapping spaces, opening up the topology of these spaces to further study.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"244 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00956-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We determine the rational class and Picard groups of the moduli space of stable logarithmic maps in genus zero, with target projective space relative a hyperplane. For the class group we exhibit an explicit basis consisting of boundary divisors. For the Picard group we exhibit a spanning set indexed by piecewise-linear functions on the tropicalisation. In both cases a complete set of boundary relations is obtained by pulling back the WDVV relations from the space of stable curves. Our proofs hinge on a controlled technique for manufacturing test curves in logarithmic mapping spaces, opening up the topology of these spaces to further study.

Abstract Image

对数映射空间上的除数和曲线
我们确定了零属稳定对数映射模空间的有理类群和皮卡尔群,其目标投影空间相对于一个超平面。对于有理类群,我们展示了一个由边界除数组成的显式基。对于皮卡尔群,我们展示了一个以热带化上的片线性函数为索引的跨集。在这两种情况下,通过从稳定曲线空间拉回 WDVV 关系,都可以得到一组完整的边界关系。我们的证明依赖于在对数映射空间中制造测试曲线的受控技术,为进一步研究这些空间的拓扑学打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信