{"title":"MOHHO: multi-objective Harris hawks optimization algorithm for service placement in fog computing","authors":"Arezoo Ghasemi","doi":"10.1007/s11227-024-06389-y","DOIUrl":null,"url":null,"abstract":"<p>The fog computing model is a new computing model that has been proposed in recent years by increasing the number of requests sent to the cloud to reduce the delay and workload of the cloud computing model. In addition to its advantages, the fog computing model also has challenges, among which we can mention the issue of service placement in this computing model, which is very effective in the performance of the computing model. So far, many works have been presented to solve the problem of service deployment by considering different goals such as energy consumption, end-to-end delay, load balancing, resource efficiency, etc. Considering the importance of all the mentioned parameters, it is very important to provide a multi-objective method. In multi-objective problems, the method of evaluating the generated solutions is a separate challenge. Therefore, in this paper, a service placement method is presented by considering end-to-end delay criteria and energy consumption based on the modified Harris hawks algorithm to solve multi-objective problems. To increase accuracy, in the proposed method called multi-objective Harris hawks optimization, a multi-objective problem is modeled as several single-objective problems. The simulation results in CloudSim show that the proposed method has achieved better results than other algorithms in terms of reducing energy consumption, end-to-end delay, and network utilization.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06389-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fog computing model is a new computing model that has been proposed in recent years by increasing the number of requests sent to the cloud to reduce the delay and workload of the cloud computing model. In addition to its advantages, the fog computing model also has challenges, among which we can mention the issue of service placement in this computing model, which is very effective in the performance of the computing model. So far, many works have been presented to solve the problem of service deployment by considering different goals such as energy consumption, end-to-end delay, load balancing, resource efficiency, etc. Considering the importance of all the mentioned parameters, it is very important to provide a multi-objective method. In multi-objective problems, the method of evaluating the generated solutions is a separate challenge. Therefore, in this paper, a service placement method is presented by considering end-to-end delay criteria and energy consumption based on the modified Harris hawks algorithm to solve multi-objective problems. To increase accuracy, in the proposed method called multi-objective Harris hawks optimization, a multi-objective problem is modeled as several single-objective problems. The simulation results in CloudSim show that the proposed method has achieved better results than other algorithms in terms of reducing energy consumption, end-to-end delay, and network utilization.