Liangdong Qu, Yingjuan Jia, Xiaoqin Li, Jingkun Fan
{"title":"Two-stage control model based on enhanced elephant clan optimization for path planning of unmanned combat aerial vehicle","authors":"Liangdong Qu, Yingjuan Jia, Xiaoqin Li, Jingkun Fan","doi":"10.1007/s11227-024-06365-6","DOIUrl":null,"url":null,"abstract":"<p>To address the path planning problem for unmanned combat aerial vehicle (UCAV) more effectively, a novel two-stage path planning model is proposed. The first stage involves a longitudinal search primarily aimed at predicting the initial path, while the second stage is a horizontal search designed to correct the initial path. Furthermore, to tackle the UCAV path planning issue more effectively, this paper designs an improved elephant clan optimization (IECO) algorithm based on the average sample learning strategy, opposition-based learning, and Lévy flight disturbance strategy. Subsequently, IECO is integrated with the two-stage model (TSIECO) to address the UCAV path planning problem. Additionally, numerical experiments across 15 test functions reveal that IECO outperforms other algorithms in terms of optimization capability and convergence speed. Finally, the UCAV path planning experimental results indicate that the two-stage model based on IECO, as proposed in this paper, has significant advantages over traditional path planning models based on other swarm intelligence algorithms. Specifically, in three different simulated environments, the TSIECO has been tested on a total of 9 maps with varying parameters, yielding paths that are optimal in terms of cost and stability.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06365-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the path planning problem for unmanned combat aerial vehicle (UCAV) more effectively, a novel two-stage path planning model is proposed. The first stage involves a longitudinal search primarily aimed at predicting the initial path, while the second stage is a horizontal search designed to correct the initial path. Furthermore, to tackle the UCAV path planning issue more effectively, this paper designs an improved elephant clan optimization (IECO) algorithm based on the average sample learning strategy, opposition-based learning, and Lévy flight disturbance strategy. Subsequently, IECO is integrated with the two-stage model (TSIECO) to address the UCAV path planning problem. Additionally, numerical experiments across 15 test functions reveal that IECO outperforms other algorithms in terms of optimization capability and convergence speed. Finally, the UCAV path planning experimental results indicate that the two-stage model based on IECO, as proposed in this paper, has significant advantages over traditional path planning models based on other swarm intelligence algorithms. Specifically, in three different simulated environments, the TSIECO has been tested on a total of 9 maps with varying parameters, yielding paths that are optimal in terms of cost and stability.