An Imputation-Based Approach for Augmenting Sparse Epidemiological Signals

Amy E Benefield, Desiree Williams, VP Nagraj
{"title":"An Imputation-Based Approach for Augmenting Sparse Epidemiological Signals","authors":"Amy E Benefield, Desiree Williams, VP Nagraj","doi":"10.1101/2024.07.31.24311314","DOIUrl":null,"url":null,"abstract":"Near-term disease forecasting and scenario projection efforts rely on the availability of data to train and evaluate model performance. In most cases, more extensive epidemiological time series data can lead to better modeling results and improved public health insights. Here we describe a procedure to augment an epidemiological time series. We used reported flu hospitalization data from FluSurv-NET and the National Healthcare Safety Network to estimate a complete time series of flu hospitalization counts dating back to 2009. The augmentation process includes concatenation, interpolation, extrapolation, and imputation steps, each designed to address specific data gaps. We demonstrate the forecasting performance gain when the extended time series is used to train flu hospitalization models at the state and national level.","PeriodicalId":501276,"journal":{"name":"medRxiv - Public and Global Health","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Public and Global Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Near-term disease forecasting and scenario projection efforts rely on the availability of data to train and evaluate model performance. In most cases, more extensive epidemiological time series data can lead to better modeling results and improved public health insights. Here we describe a procedure to augment an epidemiological time series. We used reported flu hospitalization data from FluSurv-NET and the National Healthcare Safety Network to estimate a complete time series of flu hospitalization counts dating back to 2009. The augmentation process includes concatenation, interpolation, extrapolation, and imputation steps, each designed to address specific data gaps. We demonstrate the forecasting performance gain when the extended time series is used to train flu hospitalization models at the state and national level.
基于估算的稀疏流行病学信号增强方法
近期疾病预测和情景预测工作依赖于可用数据来训练和评估模型性能。在大多数情况下,更广泛的流行病学时间序列数据可以带来更好的建模结果,提高对公共卫生的洞察力。在此,我们介绍了一种增强流行病学时间序列的程序。我们使用来自 FluSurv-NET 和国家医疗安全网络的流感住院报告数据,估算了可追溯到 2009 年的完整流感住院人数时间序列。扩增过程包括连接、内插法、外推法和估算步骤,每个步骤都旨在解决特定的数据缺口。我们展示了在州和国家层面使用扩展时间序列来训练流感住院模型时所获得的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信