{"title":"A systematic approach to soil carbon inventory on rangelands","authors":"Shawn W. Salley, Joel R. Brown","doi":"10.1071/rj24017","DOIUrl":null,"url":null,"abstract":"<p>Significant and lasting soil carbon change in rangeland ecosystems requires ecological state change. Although within-ecological state, soil carbon dynamics can occur, they are driven primarily by short-term fluctuations in weather, specifically precipitation, and are insufficient to provide reliable estimates of change to support policy and management decisions. Changes in grazing management typically do not result in ecological state change, apart from the vegetation structural change associated with long-term overgrazing. Dominant vegetation attributes such as shrub-to-grass ratios, cool season versus warm season plant production, and annual versus perennial growth habit define ecological state and are detectable accurately and cost-effectively using existing remote-sensing technology. These vegetation attributes, along with stationary soil properties, allow for mapping at scales consistent with a variety of policy and management decisions and provide a logical basis for developing a credible sampling framework for verification. Furthermore, state-transition models of ecological state dynamics are designed to provide information that can be used to support inventories and management decisions for soil carbon and other ecosystem services.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/rj24017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Significant and lasting soil carbon change in rangeland ecosystems requires ecological state change. Although within-ecological state, soil carbon dynamics can occur, they are driven primarily by short-term fluctuations in weather, specifically precipitation, and are insufficient to provide reliable estimates of change to support policy and management decisions. Changes in grazing management typically do not result in ecological state change, apart from the vegetation structural change associated with long-term overgrazing. Dominant vegetation attributes such as shrub-to-grass ratios, cool season versus warm season plant production, and annual versus perennial growth habit define ecological state and are detectable accurately and cost-effectively using existing remote-sensing technology. These vegetation attributes, along with stationary soil properties, allow for mapping at scales consistent with a variety of policy and management decisions and provide a logical basis for developing a credible sampling framework for verification. Furthermore, state-transition models of ecological state dynamics are designed to provide information that can be used to support inventories and management decisions for soil carbon and other ecosystem services.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.