Long-living Equilibria in Kinetic Astrophysical Plasma Turbulence

Mario Imbrogno, Claudio Meringolo, Sergio Servidio, Alejandro Cruz-Osorio, Benoît Cerutti, Francesco Pegoraro
{"title":"Long-living Equilibria in Kinetic Astrophysical Plasma Turbulence","authors":"Mario Imbrogno, Claudio Meringolo, Sergio Servidio, Alejandro Cruz-Osorio, Benoît Cerutti, Francesco Pegoraro","doi":"arxiv-2408.02656","DOIUrl":null,"url":null,"abstract":"Turbulence in classical fluids is characterized by persistent structures that\nemerge from the chaotic landscape. We investigate the analogous process in\nfully kinetic plasma turbulence by using high-resolution, direct numerical\nsimulations in two spatial dimensions. We observe the formation of long-living\nvortices with a profile typical of macroscopic, magnetically dominated\nforce-free states. Inspired by the Harris pinch model for inhomogeneous\nequilibria, we describe these metastable solutions with a self-consistent\nkinetic model in a cylindrical coordinate system centered on a representative\nvortex, starting from an explicit form of the particle velocity distribution\nfunction. Such new equilibria can be simplified to a Gold-Hoyle solution of the\nmodified force-free state. Turbulence is mediated by the long-living\nstructures, accompanied by transients in which such vortices merge and form\nself-similarly new metastable equilibria. This process can be relevant to the\ncomprehension of various astrophysical phenomena, going from the formation of\nplasmoids in the vicinity of massive compact objects to the emergence of\ncoherent structures in the heliosphere.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Turbulence in classical fluids is characterized by persistent structures that emerge from the chaotic landscape. We investigate the analogous process in fully kinetic plasma turbulence by using high-resolution, direct numerical simulations in two spatial dimensions. We observe the formation of long-living vortices with a profile typical of macroscopic, magnetically dominated force-free states. Inspired by the Harris pinch model for inhomogeneous equilibria, we describe these metastable solutions with a self-consistent kinetic model in a cylindrical coordinate system centered on a representative vortex, starting from an explicit form of the particle velocity distribution function. Such new equilibria can be simplified to a Gold-Hoyle solution of the modified force-free state. Turbulence is mediated by the long-living structures, accompanied by transients in which such vortices merge and form self-similarly new metastable equilibria. This process can be relevant to the comprehension of various astrophysical phenomena, going from the formation of plasmoids in the vicinity of massive compact objects to the emergence of coherent structures in the heliosphere.
动力学天体物理等离子体湍流中的长效平衡
经典流体湍流的特点是从混沌景观中产生的持久结构。我们通过在两个空间维度上使用高分辨率的直接数值模拟,研究了全动能等离子体湍流中的类似过程。我们观察到长寿命涡流的形成,其轮廓是典型的宏观无磁状态。受哈里斯非均质内部平衡夹模型的启发,我们从粒子速度分布函数的明确形式出发,在以代表性涡旋为中心的圆柱坐标系中,用自洽动力学模型描述了这些可迁移解。这种新的平衡状态可以简化为经过改进的无力状态的戈德-霍伊尔解。湍流是由长寿命结构介导的,并伴随着瞬态,在瞬态中,这种涡旋合并并形成自身类似的新的可转移平衡。这一过程与理解各种天体物理现象息息相关,包括大质量致密天体附近的等离子体的形成,以及日光层中相干结构的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信