Combining Neural Architecture Search and Automatic Code Optimization: A Survey

Inas Bachiri, Hadjer Benmeziane, Smail Niar, Riyadh Baghdadi, Hamza Ouarnoughi, Abdelkrime Aries
{"title":"Combining Neural Architecture Search and Automatic Code Optimization: A Survey","authors":"Inas Bachiri, Hadjer Benmeziane, Smail Niar, Riyadh Baghdadi, Hamza Ouarnoughi, Abdelkrime Aries","doi":"arxiv-2408.04116","DOIUrl":null,"url":null,"abstract":"Deep Learning models have experienced exponential growth in complexity and\nresource demands in recent years. Accelerating these models for efficient\nexecution on resource-constrained devices has become more crucial than ever.\nTwo notable techniques employed to achieve this goal are Hardware-aware Neural\nArchitecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS\nautomatically designs accurate yet hardware-friendly neural networks, while ACO\ninvolves searching for the best compiler optimizations to apply on neural\nnetworks for efficient mapping and inference on the target hardware. This\nsurvey explores recent works that combine these two techniques within a single\nframework. We present the fundamental principles of both domains and\ndemonstrate their sub-optimality when performed independently. We then\ninvestigate their integration into a joint optimization process that we call\nHardware Aware-Neural Architecture and Compiler Optimizations co-Search\n(NACOS).","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).
神经架构搜索与自动代码优化的结合:调查
近年来,深度学习模型的复杂性和资源需求呈指数级增长。为实现这一目标,我们采用了两种著名的技术:硬件感知神经架构搜索(HW-NAS)和自动代码优化(ACO)。HW-NAS 自动设计精确且硬件友好的神经网络,而 ACO 则涉及搜索最佳编译器优化,以应用于神经网络,从而在目标硬件上实现高效映射和推理。本研究探讨了将这两种技术结合到单一框架中的最新研究成果。我们介绍了这两个领域的基本原理,并展示了它们在独立运行时的次优化性。然后,我们研究了将这两种技术整合到一个联合优化过程中的方法,我们称之为 "硬件感知-神经架构和编译器优化联合搜索(NACOS)"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信