Existence and asymptotic behavior of solutions for nonhomogeneous Schrödinger–Poisson system with exponential and logarithmic nonlinearities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoli Lu, Jing Zhang
{"title":"Existence and asymptotic behavior of solutions for nonhomogeneous Schrödinger–Poisson system with exponential and logarithmic nonlinearities","authors":"Xiaoli Lu, Jing Zhang","doi":"10.1007/s11784-024-01122-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following nonhomogeneous quasilinear Schrödinger–Poisson system with exponential and logarithmic nonlinearities </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u+\\phi u =|u|^{p-2}u\\log |u|^2 +\\lambda f(u) +h(x),&amp;{} \\textrm{in} \\hspace{5.0pt}\\Omega ,\\\\ -\\Delta \\phi -\\varepsilon ^4 \\Delta _4 \\phi =u^2,&amp;{} \\textrm{in}\\hspace{5.0pt}\\Omega ,\\\\ u=\\phi =0,&amp;{} \\textrm{on}\\hspace{5.0pt}\\partial \\Omega ,\\\\ \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(4&lt;p&lt;+\\infty ,\\,\\varepsilon ,\\,\\lambda &gt;0\\)</span> are parameters, <span>\\(\\mathrm{\\Delta _4 \\phi = div(|\\nabla \\phi |^2 \\nabla \\phi )}\\)</span>, <span>\\(\\Omega \\subset {\\mathbb {R}}^2\\)</span> is a bounded domain, and <i>f</i> has exponential critical growth. First, using reduction argument, truncation technique, Ekeland’s variational principle, and the Mountain Pass theorem, we obtain that the above system admits at least two solutions with different energy for <span>\\(\\lambda \\)</span> large enough and <span>\\(\\varepsilon \\)</span> fixed. Finally, we research the asymptotic behavior of solutions with respect to the parameters <span>\\(\\varepsilon \\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01122-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following nonhomogeneous quasilinear Schrödinger–Poisson system with exponential and logarithmic nonlinearities

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\phi u =|u|^{p-2}u\log |u|^2 +\lambda f(u) +h(x),&{} \textrm{in} \hspace{5.0pt}\Omega ,\\ -\Delta \phi -\varepsilon ^4 \Delta _4 \phi =u^2,&{} \textrm{in}\hspace{5.0pt}\Omega ,\\ u=\phi =0,&{} \textrm{on}\hspace{5.0pt}\partial \Omega ,\\ \end{array} \right. \end{aligned}$$

where \(4<p<+\infty ,\,\varepsilon ,\,\lambda >0\) are parameters, \(\mathrm{\Delta _4 \phi = div(|\nabla \phi |^2 \nabla \phi )}\), \(\Omega \subset {\mathbb {R}}^2\) is a bounded domain, and f has exponential critical growth. First, using reduction argument, truncation technique, Ekeland’s variational principle, and the Mountain Pass theorem, we obtain that the above system admits at least two solutions with different energy for \(\lambda \) large enough and \(\varepsilon \) fixed. Finally, we research the asymptotic behavior of solutions with respect to the parameters \(\varepsilon \).

具有指数和对数非线性的非均质薛定谔-泊松系统解的存在性和渐近行为
在本文中,我们考虑以下具有指数和对数非线性的非均质准线性薛定谔-泊松系统 $$\begin{aligned}-Delta u+phi u =|u|^{p-2}u\log |u|^2 +\lambda f(u) +h(x),&{}\textrm{in}\hspace{5.0pt}\Omega ,\ -\Delta \phi -\varepsilon ^4 \Delta _4 \phi =u^2,&{}\Omega ,\ u=\phi =0,&{}\textrm{on}\hspace{5.0pt}\partial\Omega ,\\end{array}.\right。\end{aligned}$where (4<p<+\infty ,\,\varepsilon,\,\lambda >;0)都是参数,((mathrm{Delta _4 \phi = div(|\nabla \phi |^2 \nabla \phi )}),((Omega \subset {mathbb {R}}^2\ )是一个有界域,并且 f 具有指数临界增长。首先,利用还原论证、截断技术、埃克兰变分原理和山口定理,我们得到当 \(\lambda \) 足够大且 \(\varepsilon \) 固定时,上述系统至少有两个能量不同的解。最后,我们研究了解相对于参数 \(\varepsilon \)的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信