K. Jayasudha, Vijayalakshmi Subramanian, M. Marimuthu, Ram Prakash Ponraj
{"title":"Solar Powered Asymmetric Cascaded Multilevel Converter fed Multilevel Inverter","authors":"K. Jayasudha, Vijayalakshmi Subramanian, M. Marimuthu, Ram Prakash Ponraj","doi":"10.1007/s42835-024-01994-6","DOIUrl":null,"url":null,"abstract":"<p>Non isolated multilevel inverters (MLI) with reduced switch components are becoming more popular to attain higher voltage levels. However, this kind of MLI increases the number of DC sources and has some issues like higher charging current, a high peak VA rating of the switches, and a high capacitor ripple voltage. This manuscript presents a modified multicell based multilevel boost inverter with a multistage DC output. It has three sections namely Boost converter, level shifter and h-bridge inverter. The proposed circuit is powered by solar photovoltaic (PV); using the Perturb and Observe Maximum Power Point method. The suggested circuit working in asymmetric mode and produces a 31-level output waveform. This topology helps to reduce the Total Harmonic Distortion, increases the output voltage levels, and reduces the common mode voltage. This topology is compared with other multilevel inverters presented in recent literature and the analysis is presented. Simulation results for various irradiance values are presented with other key factors. The experimental prototype of a 1.5 kW, single phase, 31-level inverter is designed and verified and the proportional results are substantiated.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"102 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42835-024-01994-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Non isolated multilevel inverters (MLI) with reduced switch components are becoming more popular to attain higher voltage levels. However, this kind of MLI increases the number of DC sources and has some issues like higher charging current, a high peak VA rating of the switches, and a high capacitor ripple voltage. This manuscript presents a modified multicell based multilevel boost inverter with a multistage DC output. It has three sections namely Boost converter, level shifter and h-bridge inverter. The proposed circuit is powered by solar photovoltaic (PV); using the Perturb and Observe Maximum Power Point method. The suggested circuit working in asymmetric mode and produces a 31-level output waveform. This topology helps to reduce the Total Harmonic Distortion, increases the output voltage levels, and reduces the common mode voltage. This topology is compared with other multilevel inverters presented in recent literature and the analysis is presented. Simulation results for various irradiance values are presented with other key factors. The experimental prototype of a 1.5 kW, single phase, 31-level inverter is designed and verified and the proportional results are substantiated.
期刊介绍:
ournal of Electrical Engineering and Technology (JEET), which is the official publication of the Korean Institute of Electrical Engineers (KIEE) being published bimonthly, released the first issue in March 2006.The journal is open to submission from scholars and experts in the wide areas of electrical engineering technologies.
The scope of the journal includes all issues in the field of Electrical Engineering and Technology. Included are techniques for electrical power engineering, electrical machinery and energy conversion systems, electrophysics and applications, information and controls.