Supercritical Hopf bifurcation in baleen whale populations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiangming Zhang, Ning Zhu
{"title":"Supercritical Hopf bifurcation in baleen whale populations","authors":"Xiangming Zhang,&nbsp;Ning Zhu","doi":"10.1016/j.physd.2024.134312","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a continuous time model for the baleen whale population, which is a diverse and widely distributed parvorder of carnivorous marine mammals. We use theoretical and schematic designs to explore stability charts, rightmost characteristic roots, and supercritical Hopf bifurcation of the positive equilibrium. Our research on the Hopf bifurcation and stability of the bifurcating periodic solutions is based on the center manifold reduction and Poincaré normal form theory. Interestingly, the characteristic equation has pure imaginary roots at the second, third, and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also use the parameter values reported in the previous studies to simulate the unstable periodic solutions at the second and third critical values through bifurcation diagrams. The numerical results obtained under specific parameter values align closely with our theoretical derivations.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400263X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a continuous time model for the baleen whale population, which is a diverse and widely distributed parvorder of carnivorous marine mammals. We use theoretical and schematic designs to explore stability charts, rightmost characteristic roots, and supercritical Hopf bifurcation of the positive equilibrium. Our research on the Hopf bifurcation and stability of the bifurcating periodic solutions is based on the center manifold reduction and Poincaré normal form theory. Interestingly, the characteristic equation has pure imaginary roots at the second, third, and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also use the parameter values reported in the previous studies to simulate the unstable periodic solutions at the second and third critical values through bifurcation diagrams. The numerical results obtained under specific parameter values align closely with our theoretical derivations.

须鲸种群的超临界霍普夫分岔
须鲸是一种种类繁多、分布广泛的食肉海洋哺乳动物,本文研究了须鲸种群的连续时间模型。我们利用理论和示意图设计来探索正平衡的稳定性图、最右特征根和超临界霍普夫分岔。我们对霍普夫分岔和分岔周期解稳定性的研究是基于中心流形还原和普恩卡雷正态理论。有趣的是,特征方程在第二、第三和后续临界值处都有纯虚根。然而,霍普夫分岔定理并不满足,因为除了纯虚根之外,特征方程在这些临界值上的所有其他特征根都没有严格的负实部。我们还利用之前研究中报告的参数值,通过分岔图模拟第二和第三个临界值处的不稳定周期解。在特定参数值下得到的数值结果与我们的理论推导非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信