A hybrid reliability assessment method based on health index construction and reliability modeling for rolling bearing

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Yuan‐Jian Yang, Chengyuan Ma, Gui‐Hua Liu, Hao Lu, Le Dai, Jia‐Lun Wan, Junyu Guo
{"title":"A hybrid reliability assessment method based on health index construction and reliability modeling for rolling bearing","authors":"Yuan‐Jian Yang, Chengyuan Ma, Gui‐Hua Liu, Hao Lu, Le Dai, Jia‐Lun Wan, Junyu Guo","doi":"10.1002/qre.3630","DOIUrl":null,"url":null,"abstract":"The assessment of rolling bearing reliability is vital for ensuring mechanical operational safety and minimizing maintenance costs. Due to the difficulty in obtaining data on the performance degradation and failure time of rolling bearings, traditional methods for reliability assessment are challenged. This paper introduces a novel hybrid method for the reliability assessment of rolling bearings, combining the convolutional neural network (CNN)‐convolutional block attention module (CBAM)‐ bidirectional long short‐term memory (BiLSTM) network with the Wiener process. The approach comprises three distinct stages: Initially, it involves acquiring two‐dimensional time‐frequency representations of bearings at various operational phases using Continuous Wavelet Transform. Subsequently, the CNN‐CBAM‐BiLSTM network is employed to establish health index (HI) for the bearings and to facilitate the extraction of deep features, serving as input for the Wiener process. The final stage applies the Wiener process to evaluate the bearings’ reliability, characterizing the HI and quantifying uncertainties. The experiment is performed on bearing degradation data and the results indicate the effectiveness and superiority of the proposed hybrid method.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of rolling bearing reliability is vital for ensuring mechanical operational safety and minimizing maintenance costs. Due to the difficulty in obtaining data on the performance degradation and failure time of rolling bearings, traditional methods for reliability assessment are challenged. This paper introduces a novel hybrid method for the reliability assessment of rolling bearings, combining the convolutional neural network (CNN)‐convolutional block attention module (CBAM)‐ bidirectional long short‐term memory (BiLSTM) network with the Wiener process. The approach comprises three distinct stages: Initially, it involves acquiring two‐dimensional time‐frequency representations of bearings at various operational phases using Continuous Wavelet Transform. Subsequently, the CNN‐CBAM‐BiLSTM network is employed to establish health index (HI) for the bearings and to facilitate the extraction of deep features, serving as input for the Wiener process. The final stage applies the Wiener process to evaluate the bearings’ reliability, characterizing the HI and quantifying uncertainties. The experiment is performed on bearing degradation data and the results indicate the effectiveness and superiority of the proposed hybrid method.
基于滚动轴承健康指数构建和可靠性建模的混合可靠性评估方法
滚动轴承可靠性评估对于确保机械运行安全和最大限度降低维护成本至关重要。由于难以获得滚动轴承性能退化和失效时间的数据,传统的可靠性评估方法面临挑战。本文将卷积神经网络(CNN)-卷积块注意模块(CBAM)-双向长短期记忆(BiLSTM)网络与维纳过程相结合,介绍了一种用于滚动轴承可靠性评估的新型混合方法。该方法包括三个不同的阶段:首先,利用连续小波变换获取轴承在不同运行阶段的二维时频表示。随后,采用 CNN-CBAM-BiLSTM 网络为轴承建立健康指数 (HI),并促进深度特征的提取,作为维纳过程的输入。最后阶段应用维纳过程评估轴承的可靠性,确定健康指数的特征并量化不确定性。实验是在轴承退化数据上进行的,结果表明了所提出的混合方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信