Deep learning for Bitcoin price direction prediction: models and trading strategies empirically compared

IF 6.9 1区 经济学 Q1 BUSINESS, FINANCE
Oluwadamilare Omole, David Enke
{"title":"Deep learning for Bitcoin price direction prediction: models and trading strategies empirically compared","authors":"Oluwadamilare Omole, David Enke","doi":"10.1186/s40854-024-00643-1","DOIUrl":null,"url":null,"abstract":"This paper applies deep learning models to predict Bitcoin price directions and the subsequent profitability of trading strategies based on these predictions. The study compares the performance of the convolutional neural network–long short-term memory (CNN–LSTM), long- and short-term time-series network, temporal convolutional network, and ARIMA (benchmark) models for predicting Bitcoin prices using on-chain data. Feature-selection methods—i.e., Boruta, genetic algorithm, and light gradient boosting machine—are applied to address the curse of dimensionality that could result from a large feature set. Results indicate that combining Boruta feature selection with the CNN–LSTM model consistently outperforms other combinations, achieving an accuracy of 82.44%. Three trading strategies and three investment positions are examined through backtesting. The long-and-short buy-and-sell investment approach generated an extraordinary annual return of 6654% when informed by higher-accuracy price-direction predictions. This study provides evidence of the potential profitability of predictive models in Bitcoin trading.","PeriodicalId":37175,"journal":{"name":"Financial Innovation","volume":"58 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Innovation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1186/s40854-024-00643-1","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper applies deep learning models to predict Bitcoin price directions and the subsequent profitability of trading strategies based on these predictions. The study compares the performance of the convolutional neural network–long short-term memory (CNN–LSTM), long- and short-term time-series network, temporal convolutional network, and ARIMA (benchmark) models for predicting Bitcoin prices using on-chain data. Feature-selection methods—i.e., Boruta, genetic algorithm, and light gradient boosting machine—are applied to address the curse of dimensionality that could result from a large feature set. Results indicate that combining Boruta feature selection with the CNN–LSTM model consistently outperforms other combinations, achieving an accuracy of 82.44%. Three trading strategies and three investment positions are examined through backtesting. The long-and-short buy-and-sell investment approach generated an extraordinary annual return of 6654% when informed by higher-accuracy price-direction predictions. This study provides evidence of the potential profitability of predictive models in Bitcoin trading.
比特币价格走向预测的深度学习:模型和交易策略的经验比较
本文应用深度学习模型来预测比特币的价格走向以及基于这些预测的交易策略的后续盈利能力。研究比较了卷积神经网络-长短期记忆(CNN-LSTM)、长短期时间序列网络、时序卷积网络和 ARIMA(基准)模型在使用链上数据预测比特币价格方面的性能。特征选择方法--即 Boruta、遗传算法和轻梯度提升机--被用于解决大特征集可能导致的维度诅咒问题。结果表明,将 Boruta 特征选择与 CNN-LSTM 模型相结合的准确率始终优于其他组合,达到了 82.44%。通过回溯测试检验了三种交易策略和三种投资头寸。在更高精度的价格方向预测的指导下,多空买入和卖出投资方法产生了 6654% 的超常年回报率。这项研究为比特币交易中预测模型的潜在盈利能力提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Financial Innovation
Financial Innovation Economics, Econometrics and Finance-Finance
CiteScore
11.40
自引率
11.90%
发文量
95
审稿时长
5 weeks
期刊介绍: Financial Innovation (FIN), a Springer OA journal sponsored by Southwestern University of Finance and Economics, serves as a global academic platform for sharing research findings in all aspects of financial innovation during the electronic business era. It facilitates interactions among researchers, policymakers, and practitioners, focusing on new financial instruments, technologies, markets, and institutions. Emphasizing emerging financial products enabled by disruptive technologies, FIN publishes high-quality academic and practical papers. The journal is peer-reviewed, indexed in SSCI, Scopus, Google Scholar, CNKI, CQVIP, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信