Automated PMC-based Power Modeling Methodology for Modern Mobile GPUs

Pranab DashPurdue University, Y. Charlie HuPurdue University, Abhilash JindalIIT Delhi
{"title":"Automated PMC-based Power Modeling Methodology for Modern Mobile GPUs","authors":"Pranab DashPurdue University, Y. Charlie HuPurdue University, Abhilash JindalIIT Delhi","doi":"arxiv-2408.04886","DOIUrl":null,"url":null,"abstract":"The rise of machine learning workload on smartphones has propelled GPUs into\none of the most power-hungry components of modern smartphones and elevates the\nneed for optimizing the GPU power draw by mobile apps. Optimizing the power\nconsumption of mobile GPUs in turn requires accurate estimation of their power\ndraw during app execution. In this paper, we observe that the prior-art,\nutilization-frequency based GPU models cannot capture the diverse\nmicro-architectural usage of modern mobile GPUs.We show that these models\nsuffer poor modeling accuracy under diverse GPU workload, and study whether\nperformance monitoring counter (PMC)-based models recently proposed for\ndesktop/server GPUs can be applied to accurately model mobile GPU power. Our\nstudy shows that the PMCs that come with dominating mobile GPUs used in modern\nsmartphones are sufficient to model mobile GPU power, but exhibit\nmulticollinearity if used altogether. We present APGPM, the mobile GPU power\nmodeling methodology that automatically selects an optimal set of PMCs that\nmaximizes the GPU power model accuracy. Evaluation on two representative mobile\nGPUs shows that APGPM-generated GPU power models reduce the MAPE modeling error\nof prior-art by 1.95x to 2.66x (i.e., by 11.3% to 15.4%) while using only 4.66%\nto 20.41% of the total number of available PMCs.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"98 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of machine learning workload on smartphones has propelled GPUs into one of the most power-hungry components of modern smartphones and elevates the need for optimizing the GPU power draw by mobile apps. Optimizing the power consumption of mobile GPUs in turn requires accurate estimation of their power draw during app execution. In this paper, we observe that the prior-art, utilization-frequency based GPU models cannot capture the diverse micro-architectural usage of modern mobile GPUs.We show that these models suffer poor modeling accuracy under diverse GPU workload, and study whether performance monitoring counter (PMC)-based models recently proposed for desktop/server GPUs can be applied to accurately model mobile GPU power. Our study shows that the PMCs that come with dominating mobile GPUs used in modern smartphones are sufficient to model mobile GPU power, but exhibit multicollinearity if used altogether. We present APGPM, the mobile GPU power modeling methodology that automatically selects an optimal set of PMCs that maximizes the GPU power model accuracy. Evaluation on two representative mobile GPUs shows that APGPM-generated GPU power models reduce the MAPE modeling error of prior-art by 1.95x to 2.66x (i.e., by 11.3% to 15.4%) while using only 4.66% to 20.41% of the total number of available PMCs.
基于 PMC 的现代移动 GPU 自动功率建模方法
智能手机上机器学习工作负载的增加使 GPU 成为现代智能手机中最耗电的组件之一,并提升了优化移动应用程序 GPU 功耗的需求。反过来,优化移动 GPU 的功耗也需要准确估计其在应用执行过程中的耗电量。我们的研究表明,这些模型在不同 GPU 工作负载下的建模精度较低,并研究了最近针对台式机/服务器 GPU 提出的基于性能监测计数器(PMC)的模型能否应用于移动 GPU 功耗的精确建模。我们的研究表明,现代智能手机中使用的主流移动 GPU 所配备的 PMC 足以为移动 GPU 功率建模,但如果同时使用,则会表现出多重共线性。我们提出了移动 GPU 功率建模方法 APGPM,它能自动选择一组最佳的 PMC,最大限度地提高 GPU 功率模型的准确性。在两款具有代表性的移动 GPU 上进行的评估表明,APGPM 生成的 GPU 功率模型将先验技术的 MAPE 建模误差降低了 1.95 倍到 2.66 倍(即降低了 11.3% 到 15.4%),同时只使用了可用 PMC 总数的 4.66% 到 20.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信