AI for operational methane emitter monitoring from space

Anna Vaughan, Gonzalo Mateo-Garcia, Itziar Irakulis-Loitxate, Marc Watine, Pablo Fernandez-Poblaciones, Richard E. Turner, James Requeima, Javier Gorroño, Cynthia Randles, Manfredi Caltagirone, Claudio Cifarelli
{"title":"AI for operational methane emitter monitoring from space","authors":"Anna Vaughan, Gonzalo Mateo-Garcia, Itziar Irakulis-Loitxate, Marc Watine, Pablo Fernandez-Poblaciones, Richard E. Turner, James Requeima, Javier Gorroño, Cynthia Randles, Manfredi Caltagirone, Claudio Cifarelli","doi":"arxiv-2408.04745","DOIUrl":null,"url":null,"abstract":"Mitigating methane emissions is the fastest way to stop global warming in the\nshort-term and buy humanity time to decarbonise. Despite the demonstrated\nability of remote sensing instruments to detect methane plumes, no system has\nbeen available to routinely monitor and act on these events. We present\nMARS-S2L, an automated AI-driven methane emitter monitoring system for\nSentinel-2 and Landsat satellite imagery deployed operationally at the United\nNations Environment Programme's International Methane Emissions Observatory. We\ncompile a global dataset of thousands of super-emission events for training and\nevaluation, demonstrating that MARS-S2L can skillfully monitor emissions in a\ndiverse range of regions globally, providing a 216% improvement in mean average\nprecision over a current state-of-the-art detection method. Running this system\noperationally for six months has yielded 457 near-real-time detections in 22\ndifferent countries of which 62 have already been used to provide formal\nnotifications to governments and stakeholders.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitigating methane emissions is the fastest way to stop global warming in the short-term and buy humanity time to decarbonise. Despite the demonstrated ability of remote sensing instruments to detect methane plumes, no system has been available to routinely monitor and act on these events. We present MARS-S2L, an automated AI-driven methane emitter monitoring system for Sentinel-2 and Landsat satellite imagery deployed operationally at the United Nations Environment Programme's International Methane Emissions Observatory. We compile a global dataset of thousands of super-emission events for training and evaluation, demonstrating that MARS-S2L can skillfully monitor emissions in a diverse range of regions globally, providing a 216% improvement in mean average precision over a current state-of-the-art detection method. Running this system operationally for six months has yielded 457 near-real-time detections in 22 different countries of which 62 have already been used to provide formal notifications to governments and stakeholders.
从空间对甲烷排放者进行实际监测的人工智能
减少甲烷排放是在短期内阻止全球变暖并为人类脱碳赢得时间的最快方法。尽管遥感仪器已经证明可以探测到甲烷羽流,但还没有系统可以对这些事件进行常规监测并采取行动。我们介绍了 MARS-S2L,这是一个由人工智能驱动的甲烷排放物自动监测系统,可用于联合国环境规划署国际甲烷排放观测站部署的哨兵-2 号和大地遥感卫星图像。我们编制了一个包含数千个超级排放事件的全球数据集,用于培训和评估,结果表明 MARS-S2L 能够熟练地监测全球多个地区的排放情况,与目前最先进的检测方法相比,平均精度提高了 216%。该系统运行 6 个月以来,在 22 个不同国家进行了 457 次近乎实时的检测,其中 62 次已用于向政府和利益相关方提供正式通知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信