{"title":"High-resolution enhanced cross-subspace fusion network for light field image superresolution","authors":"Shixu Ying , Shubo Zhou , Xue-Qin Jiang , Yongbin Gao , Feng Pan , Zhijun Fang","doi":"10.1016/j.displa.2024.102803","DOIUrl":null,"url":null,"abstract":"<div><p>Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102803"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001677","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.