Zilin Jiang, Yixin Sun, Yifei Gao, Lilun Xu and Domna G Kotsifaki
{"title":"Fast lipid vesicles and dielectric particles migration using thermal-gradient-induced forces","authors":"Zilin Jiang, Yixin Sun, Yifei Gao, Lilun Xu and Domna G Kotsifaki","doi":"10.1088/2040-8986/ad69a0","DOIUrl":null,"url":null,"abstract":"Lipid vesicles are small biological particles that can be used for both targeted drug delivery systems and clinical studies. Their optical manipulation, however, is limited by the small difference in refractive indices with the surrounding medium, as well as the requirement for high laser trapping powers. In this work, we combine gradient force and thermal forces to deliver and trap individual lipid vesicles with low-trapping laser powers. The total optothermal force exerted on liposomes causes them to migrate rapidly toward the laser focus with a high average migration velocity of 1.77 µm s−1 under 7.3% w/v polyethylene glycol (PEG) concentration and low trapping laser power of 1 mW. A high normalized experimental trap stiffness of 0.88 (pN µm) mW−1 was obtained at 7.3% w/v PEG/water solution. This work may open new ways for bioparticle sorting and manipulation with potential applications in cellular studies, drug delivery, biosensing, and medicine.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"247 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad69a0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid vesicles are small biological particles that can be used for both targeted drug delivery systems and clinical studies. Their optical manipulation, however, is limited by the small difference in refractive indices with the surrounding medium, as well as the requirement for high laser trapping powers. In this work, we combine gradient force and thermal forces to deliver and trap individual lipid vesicles with low-trapping laser powers. The total optothermal force exerted on liposomes causes them to migrate rapidly toward the laser focus with a high average migration velocity of 1.77 µm s−1 under 7.3% w/v polyethylene glycol (PEG) concentration and low trapping laser power of 1 mW. A high normalized experimental trap stiffness of 0.88 (pN µm) mW−1 was obtained at 7.3% w/v PEG/water solution. This work may open new ways for bioparticle sorting and manipulation with potential applications in cellular studies, drug delivery, biosensing, and medicine.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.