Monogamy of entanglement between cones

IF 1.3 2区 数学 Q1 MATHEMATICS
Guillaume Aubrun, Alexander Müller-Hermes, Martin Plávala
{"title":"Monogamy of entanglement between cones","authors":"Guillaume Aubrun, Alexander Müller-Hermes, Martin Plávala","doi":"10.1007/s00208-024-02935-4","DOIUrl":null,"url":null,"abstract":"<p>A separable quantum state shared between parties <i>A</i> and <i>B</i> can be symmetrically extended to a quantum state shared between party <i>A</i> and parties <span>\\(B_1,\\ldots ,B_k\\)</span> for every <span>\\(k\\in \\textbf{N}\\)</span>. Quantum states that are not separable, i.e., entangled, do not have this property. This phenomenon is known as “monogamy of entanglement”. We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones <span>\\(\\textsf{C}_A\\)</span> and <span>\\(\\textsf{C}_B\\)</span>: The elements of the minimal tensor product <span>\\(\\textsf{C}_A\\otimes _{\\min } \\textsf{C}_B\\)</span> are precisely the tensors that can be symmetrically extended to elements in the maximal tensor product <span>\\(\\textsf{C}_A\\otimes _{\\max } \\textsf{C}^{\\otimes _{\\max } k}_B\\)</span> for every <span>\\(k\\in \\textbf{N}\\)</span>. Equivalently, the minimal tensor product of two cones is the intersection of the nested sets of <i>k</i>-extendible tensors. It is a natural question when the minimal tensor product <span>\\(\\textsf{C}_A\\otimes _{\\min } \\textsf{C}_B\\)</span> coincides with the set of <i>k</i>-extendible tensors for some finite <i>k</i>. We show that this is universally the case for every cone <span>\\(\\textsf{C}_A\\)</span> if and only if <span>\\(\\textsf{C}_B\\)</span> is a polyhedral cone with a base given by a product of simplices. Our proof makes use of a new characterization of products of simplices up to affine equivalence that we believe is of independent interest.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"311 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02935-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A separable quantum state shared between parties A and B can be symmetrically extended to a quantum state shared between party A and parties \(B_1,\ldots ,B_k\) for every \(k\in \textbf{N}\). Quantum states that are not separable, i.e., entangled, do not have this property. This phenomenon is known as “monogamy of entanglement”. We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones \(\textsf{C}_A\) and \(\textsf{C}_B\): The elements of the minimal tensor product \(\textsf{C}_A\otimes _{\min } \textsf{C}_B\) are precisely the tensors that can be symmetrically extended to elements in the maximal tensor product \(\textsf{C}_A\otimes _{\max } \textsf{C}^{\otimes _{\max } k}_B\) for every \(k\in \textbf{N}\). Equivalently, the minimal tensor product of two cones is the intersection of the nested sets of k-extendible tensors. It is a natural question when the minimal tensor product \(\textsf{C}_A\otimes _{\min } \textsf{C}_B\) coincides with the set of k-extendible tensors for some finite k. We show that this is universally the case for every cone \(\textsf{C}_A\) if and only if \(\textsf{C}_B\) is a polyhedral cone with a base given by a product of simplices. Our proof makes use of a new characterization of products of simplices up to affine equivalence that we believe is of independent interest.

Abstract Image

锥体间纠缠的一夫一妻制
甲乙双方共享的可分离量子态可以对称地扩展为甲乙双方共享的量子态(B_1,\ldots ,B_k\),对于每一个\(kin \textbf{N}\)。不可分离的量子态,即纠缠的量子态,不具备这一特性。这种现象被称为 "纠缠的一元性"。我们证明,一元性不仅是量子理论的一个特征,而且是一般凸锥对 \(\textsf{C}A\) 和 \(\textsf{C}_B\) 的最小张量积的特征:最小张量乘 \(\textsf{C}_A\otimes _{\min } \textsf{C}_B\) 中的元素正是可以对称地扩展到最大张量乘 \(\textsf{C}_A\otimes _{\max } \textsf{C}^{otimes _{\max } k}_B\) 中元素的张量,对于每一个 \(k\in \textbf{N}\) 而言。等价地,两个锥体的最小张量积就是可扩展张量的嵌套集的交集。当最小张量积 \(\textsf{C}_A\otimes _\{min } \textsf{C}_B\) 与某个有限 k 的可扩展张量集合重合时,这是一个很自然的问题。我们证明,对于每个圆锥体 \(\textsf{C}_A\) 而言,当且仅当\(\textsf{C}_B\) 是一个多面体圆锥体,其底面由简约的乘积给出时,情况都是如此。我们的证明利用了简约乘积的一个新特征,即仿射等价性,我们认为这一点具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信