Experimental study on coherent structures by small particles suspended in high aspect-ratio ( $$\Gamma =$$ 2.5) thermocapillary liquid bridges of high Prandtl number

Keiichiro Kato, Shogo Sensui, Shin Noguchi, Kizuku Kurose, Ichiro Ueno
{"title":"Experimental study on coherent structures by small particles suspended in high aspect-ratio ( $$\\Gamma =$$ 2.5) thermocapillary liquid bridges of high Prandtl number","authors":"Keiichiro Kato, Shogo Sensui, Shin Noguchi, Kizuku Kurose, Ichiro Ueno","doi":"10.1140/epjs/s11734-024-01180-9","DOIUrl":null,"url":null,"abstract":"<p>In time-dependent traveling-wave convection, it has been confirmed that small particles of low Stokes number (<span>\\(\\textrm{St}\\ll\\)</span> 1) form three-dimensional closed structures known as the particle accumulation structures (PASs). We focus on coherent structures formed in high aspect-ratio thermocapillary liquid bridges (<span>\\(\\Gamma =\\)</span> 2.5), where oscillatory convection due to the so-called hydrothermal wave instability of <span>\\(m_{\\textrm{HTW}}=\\)</span> 1 stably emerges, and carry out experimental explorations into the volume ratio dependence of the emergence of coherent structures. Variation in the volume ratio induces the presence of coherent structures with different azimuthal wave numbers, that is, different spatial structures. Among the particles added to the liquid bridge, we perform spatio-temporal tracking of particles to quantify the correlation between the behavior of particles and the spatial structures of coherent structures with different rational wave numbers.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01180-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In time-dependent traveling-wave convection, it has been confirmed that small particles of low Stokes number (\(\textrm{St}\ll\) 1) form three-dimensional closed structures known as the particle accumulation structures (PASs). We focus on coherent structures formed in high aspect-ratio thermocapillary liquid bridges (\(\Gamma =\) 2.5), where oscillatory convection due to the so-called hydrothermal wave instability of \(m_{\textrm{HTW}}=\) 1 stably emerges, and carry out experimental explorations into the volume ratio dependence of the emergence of coherent structures. Variation in the volume ratio induces the presence of coherent structures with different azimuthal wave numbers, that is, different spatial structures. Among the particles added to the liquid bridge, we perform spatio-temporal tracking of particles to quantify the correlation between the behavior of particles and the spatial structures of coherent structures with different rational wave numbers.

Abstract Image

关于悬浮在高纵横比($$\Gamma =$$ 2.5)高普朗特数热毛细管液桥中的小颗粒相干结构的实验研究
在随时间变化的行波对流中,已经证实低斯托克斯数(\(\textrm{St}\ll\) 1)的小颗粒会形成被称为颗粒堆积结构(PASs)的三维封闭结构。我们重点研究了在高纵横比热毛细管液桥(\(\Gamma =\) 2.5)中形成的相干结构,在这种情况下,由于\(m_{\textrm{HTW}}=\) 1的所谓热液波不稳定性而产生的振荡对流会稳定地出现,并对相干结构出现的体积比依赖性进行了实验探索。体积比的变化会诱导出不同方位角波数的相干结构,即不同的空间结构。在加入液桥的粒子中,我们对粒子进行了时空跟踪,以量化粒子行为与具有不同有理波数的相干结构的空间结构之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信