Hybrid dynamical modeling of shape memory alloy actuators with phase kinetic equations

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Scott Kennedy, Nicholas Vlajic, Edmon Perkins
{"title":"Hybrid dynamical modeling of shape memory alloy actuators with phase kinetic equations","authors":"Scott Kennedy, Nicholas Vlajic, Edmon Perkins","doi":"10.1177/1045389x241265617","DOIUrl":null,"url":null,"abstract":"Shape memory alloy morphing actuators are a type of composite soft actuator with many attractive properties such as large deformation, small form factor, self-sensing ability, and physical reservoir computing potential. These actuators are composed of active shape memory alloy wires and a passive material to magnify the overall deflection. However, the dynamic modeling of these actuators is difficult due to both shape memory alloy characteristics and the nonlinearity of the passive layer. Here, a hybrid dynamical model is proposed that couples the phase kinetics and thermal modeling for the shape memory alloy with a dynamic Cosserat beam model. This hybrid model is benchmarked against experimental linear and morphing actuators resulting in a root mean squared error of 0.87 mm for the linear actuator and root mean squared error of 1.34 and 1.42 mm for the two morphing actuator configurations evaluated in this work. This model applies continuous phase kinetic equations in a comprehensive hybrid dynamical model to accurately simulate the hysteretic transition of the alloy, which is then coupled to a high deformation beam model. This work can expand the capability and design of novel morphing actuators to achieve specified dynamic characteristics for increased application in robotic fields.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241265617","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Shape memory alloy morphing actuators are a type of composite soft actuator with many attractive properties such as large deformation, small form factor, self-sensing ability, and physical reservoir computing potential. These actuators are composed of active shape memory alloy wires and a passive material to magnify the overall deflection. However, the dynamic modeling of these actuators is difficult due to both shape memory alloy characteristics and the nonlinearity of the passive layer. Here, a hybrid dynamical model is proposed that couples the phase kinetics and thermal modeling for the shape memory alloy with a dynamic Cosserat beam model. This hybrid model is benchmarked against experimental linear and morphing actuators resulting in a root mean squared error of 0.87 mm for the linear actuator and root mean squared error of 1.34 and 1.42 mm for the two morphing actuator configurations evaluated in this work. This model applies continuous phase kinetic equations in a comprehensive hybrid dynamical model to accurately simulate the hysteretic transition of the alloy, which is then coupled to a high deformation beam model. This work can expand the capability and design of novel morphing actuators to achieve specified dynamic characteristics for increased application in robotic fields.
利用相位动力学方程对形状记忆合金致动器进行混合动力学建模
形状记忆合金变形致动器是一种复合软致动器,具有变形量大、外形尺寸小、自感应能力强和物理存储计算潜力大等诸多诱人特性。这些致动器由主动形状记忆合金线和被动材料组成,可放大整体挠度。然而,由于形状记忆合金的特性和被动层的非线性,这些致动器的动态建模非常困难。本文提出了一种混合动力学模型,将形状记忆合金的相动力学和热建模与动态 Cosserat 梁模型结合起来。该混合模型以实验中的线性和变形致动器为基准,结果是线性致动器的均方根误差为 0.87 毫米,而本研究中评估的两种变形致动器配置的均方根误差分别为 1.34 毫米和 1.42 毫米。该模型在一个综合混合动力学模型中应用了连续相动力学方程,以精确模拟合金的滞后转变,然后将其与高变形梁模型耦合。这项工作可以扩展新型变形致动器的能力和设计,使其达到指定的动态特性,从而增加在机器人领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信