Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti
{"title":"Uncertainty Propagation and Dynamic Robust Risk Measures","authors":"Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti","doi":"10.1287/moor.2023.0267","DOIUrl":null,"url":null,"abstract":"We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0267","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.