Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, Samir Kassi
{"title":"Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy","authors":"Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, Samir Kassi","doi":"10.5194/amt-17-4599-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In situ measurements of water vapour isotopic composition in polar regions has provided needed constrains of post-deposition processes involved in the archiving of the climatic signal in ice core records. During polar winter, the temperatures, and thus the specific humidity, are so low that current commercial techniques are not able to measure the vapour isotopic composition with enough precision. Here, we make use of new developments in infrared spectroscopy and combine an optical-feedback frequency-stabilised laser source (OFFS technique) using a V-shaped cavity optical feedback (VCOF) cavity and a high-finesse cavity ring-down spectroscopy (CRDS) cavity to increase the signal-to-noise ratio while measuring absorption transitions of water isotopes. We present a laboratory infrared spectrometer leveraging all these techniques dedicated to measure water vapour isotopic composition at low humidity levels. At 400 ppmv, the instrument demonstrates a precision of 0.01 ‰ and 0.1 ‰ in δ18O and d-excess, respectively, for an integration time of 2 min. This set-up yields an isotopic composition precision below 1 ‰ at water mixing ratios down to 4 ppmv, which suggests an extrapolated precision in δ18O of 1.5 ‰ at 1 ppmv. Indeed, thanks to the stabilisation of the laser by the VCOF, the instrument exhibits extremely low drift and very high signal-to-noise ratio. The instrument is not hindered by a strong isotope–humidity response which at low humidity can create extensive biases on commercial instruments.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"54 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-4599-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In situ measurements of water vapour isotopic composition in polar regions has provided needed constrains of post-deposition processes involved in the archiving of the climatic signal in ice core records. During polar winter, the temperatures, and thus the specific humidity, are so low that current commercial techniques are not able to measure the vapour isotopic composition with enough precision. Here, we make use of new developments in infrared spectroscopy and combine an optical-feedback frequency-stabilised laser source (OFFS technique) using a V-shaped cavity optical feedback (VCOF) cavity and a high-finesse cavity ring-down spectroscopy (CRDS) cavity to increase the signal-to-noise ratio while measuring absorption transitions of water isotopes. We present a laboratory infrared spectrometer leveraging all these techniques dedicated to measure water vapour isotopic composition at low humidity levels. At 400 ppmv, the instrument demonstrates a precision of 0.01 ‰ and 0.1 ‰ in δ18O and d-excess, respectively, for an integration time of 2 min. This set-up yields an isotopic composition precision below 1 ‰ at water mixing ratios down to 4 ppmv, which suggests an extrapolated precision in δ18O of 1.5 ‰ at 1 ppmv. Indeed, thanks to the stabilisation of the laser by the VCOF, the instrument exhibits extremely low drift and very high signal-to-noise ratio. The instrument is not hindered by a strong isotope–humidity response which at low humidity can create extensive biases on commercial instruments.
利用频率稳定的空腔环降光谱技术在低湿度条件下进行可靠的水蒸气同位素组成测量
摘要对极地地区水蒸气同位素组成的现场测量为冰芯记录中气候信号的存档所涉及的沉积后过程提供了所需的约束条件。在极地冬季,温度和湿度都很低,因此目前的商业技术无法足够精确地测量水蒸气同位素组成。在此,我们利用红外光谱技术的新发展,将使用 V 型腔光反馈(VCOF)腔的光反馈频率稳定激光源(OFFS 技术)与高精细腔环降光谱(CRDS)腔相结合,在测量水同位素吸收跃迁的同时提高信噪比。我们介绍的实验室红外光谱仪利用了所有这些技术,专门用于测量低湿度水平下的水蒸气同位素组成。在 400 ppmv 的条件下,该仪器在 2 分钟的积分时间内,δ18O 和 d-excess 的精度分别为 0.01 ‰ 和 0.1 ‰。在水混合比低至 4 ppmv 的情况下,这种设置可获得低于 1 ‰ 的同位素组成精度,这表明在 1 ppmv 的情况下,δ18O 的推断精度为 1.5 ‰。事实上,得益于 VCOF 对激光的稳定作用,该仪器的漂移极低,信噪比极高。该仪器不受强烈的同位素-湿度反应的影响,因为在低湿度条件下,这种反应会对商用仪器造成很大的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信